Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx:\frac {dy}{dx}: y=cos1(1x21+x2),  0<x<1y=cos^{-1}(\frac {1-x^2}{1+x^2}),\ \ 0<x<1

Answer

The given relationship is y = cos-1(1x21+x2)(\frac {1-x^2}{1+x^2})

y = cos-1(1x21+x2)(\frac {1-x^2}{1+x^2})

⇒cos y = (1x21+x2)(\frac {1-x^2}{1+x^2})

1tan2y21+tan2y2\frac {1-tan^2\frac y2}{1+tan^2\frac y2} = 1x21+x2\frac {1-x^2}{1+x^2}
On comparing L.H.S. and R.H.S. of the above relationship, we obtain
tan y2\frac y2 = x
Differentiating this relationship with respect to x,we obtain

sec2y2\frac y2 . \frac {d}{dx}$$(\frac y2) = ddx\frac {d}{dx}(x)

⇒sec2y2\frac y2 . \frac 12$$\frac {dy}{dx} = 1

dydx\frac {dy}{dx} = 2sec2y2\frac {2}{sec^2\frac y2}

dydx\frac {dy}{dx}= 2tan2y2\frac {2}{tan^2\frac y2}

dydx\frac {dy}{dx} = 11+x2\frac {1}{1+x^2}