Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac {dy}{dx}: xy+y2=tan x+yxy+y^2=tan\ x+y

Answer

The given relationship is xy + y2 = tan x + y
Differentiating this relationship with respect to x, we obtain
ddx\frac {d}{dx}(xy+y2) = ddx\frac {d}{dx}(tan x+y)

\implies$$\frac {d}{dx}(xy) + ddx\frac {d}{dx}(y2) = ddx\frac {d}{dx}(tan x) + dydx\frac {dy}{dx}

    \implies[y.ddx\frac {d}{dx}(x) + x.dydx\frac {dy}{dx}] + 2ydydx\frac {dy}{dx} = sec2x + dydx\frac {dy}{dx} [Using product rule and chain rule]

    \impliesy.1 + x.dydx\frac {dy}{dx} + 2ydydx\frac {dy}{dx} = sec2x + dydx\frac {dy}{dx}

    \implies(x + 2y -1)dydx\frac {dy}{dx}= sec2x - y

dydx\frac {dy}{dx} = sec2xy(x+2y1)\frac {sec^2x - y}{(x+2y-1)}