Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac {dy}{dx}: x3+x2y+xy2+y3=81x^3+x^2y+xy^2+y^3=81

Answer

The given relationship is x3 + x2y + xy2 + y3 = 81
Differentiating this relationship with respect to x, we obtain
ddx\frac {d}{dx}(x3 + x2y + xy2 + y3) = ddx\frac {d}{dx}(81)

ddx\frac {d}{dx}(x3) + ddx\frac {d}{dx}(x2y) + ddx\frac {d}{dx}(xy2) + ddx\frac {d}{dx}(y3)=0

⇒ 3x2 + [y.ddx\frac {d}{dx}(x2) + x2.dydx\frac {dy}{dx}] + [y2 ddx\frac {d}{dx}(x) +x ddx\frac {d}{dx}(y2)] + 3y2ddx\frac {d}{dx} = 0

⇒ 3x2 + [y.2x + x2dydx\frac {dy}{dx}] + [y2.1 + x.2y.dydx\frac {dy}{dx}] + 3y2dydx\frac {dy}{dx} = 0

⇒ (x2 + 2xy + 3y2)dydx\frac {dy}{dx} + (3x2 + 2xy + y2) = 0

dydx\frac {dy}{dx} = (3x2+2xy+y2)(x2+2xy+3y2)-\frac {(3x^2+2xy+y^2)}{(x^2+2xy+3y^2)}