Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac {dy}{dx}: x2+xy+y2=100x^2+xy+y^2=100

Answer

The given relationship is x2 + xy + y2 = 100
Differentiating this relationship with respect to x, we obtain
ddx\frac {d}{dx}(x2 + xy + y2) = ddx\frac {d}{dx}(100)

ddx\frac {d}{dx}(x2) + ddx\frac {d}{dx}(xy) + ddx\frac {d}{dx}(y2)=0

⇒ 2x + [y . ddx\frac {d}{dx}(x) + x . dydx\frac {dy}{dx}] + 2y dydx\frac {dy}{dx} = 0 [using product rule and chain rule]

⇒ 2x + y . 1 + x . dydx\frac {dy}{dx} + 2y dydx\frac {dy}{dx} = 0

⇒ 2x + y + (x+2y) dydx\frac {dy}{dx} = 0

dydx\frac {dy}{dx} = 2x+yx+2y-\frac {2x+y}{x+2y}