Question
Mathematics Question on Continuity and differentiability
Find dxdy: sin2y+cos xy=π
Answer
The given relationship is sin2y + cos xy = π
Differentiating this relationship with respect to x, we obtain
dxd(sin2y + cos xy) = dxd(π)
⇒dxd(sin2y) + dxd (cos xy) = 0 ……..... (1)
Using chain rule, we obtain
\implies$$\frac {d}{dx}(sin2y) = 2sin y . dxd(sin y) = 2sin y cos y dxdy ……...... (2)
dxd(cos xy) = -sin xy. dxd(xy) = - sin xy [ydxd(x) + xdxd]
= -sin xy [y.1+xdxdy] = -y sin xy - x sin xy . dxdy ………..... (3)
From (1), (2) and (3), we obtain
2sin y cos y dxdy - y sin xy - x sin xy dxdy = 0
⟹(2sin y cos y - x sin xy)dxdy = y sin xy
⟹(sin 2y - x sin xy)dxdy = y sin xy
∴dxdy = sin 2y−xsin xyysin xy