Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx: \frac {dy}{dx}: sin2y+cos xy=πsin^2y+cos\ xy=\pi

Answer

The given relationship is sin2y + cos xy = π\pi

Differentiating this relationship with respect to x, we obtain

ddx\frac {d}{dx}(sin2y + cos xy) = ddx\frac {d}{dx}(π\pi)

ddx\frac {d}{dx}(sin2y) + ddx\frac {d}{dx} (cos xy) = 0 ……..... (1)
Using chain rule, we obtain

\implies$$\frac {d}{dx}(sin2y) = 2sin y . ddx\frac {d}{dx}(sin y) = 2sin y cos y dydx\frac {dy}{dx} ……...... (2)

ddx\frac {d}{dx}(cos xy) = -sin xy. ddx\frac {d}{dx}(xy) = - sin xy [yddx\frac {d}{dx}(x) + xddx\frac {d}{dx}]

= -sin xy [y.1+xdydx\frac {dy}{dx}] = -y sin xy - x sin xy . dydx\frac {dy}{dx} ………..... (3)

From (1), (2) and (3), we obtain

2sin y cos y dydx\frac {dy}{dx} - y sin xy - x sin xy dydx\frac {dy}{dx} = 0

    \implies(2sin y cos y - x sin xy)dydx\frac {dy}{dx} = y sin xy

    \implies(sin 2y - x sin xy)dydx\frac {dy}{dx} = y sin xy

dydx\frac {dy}{dx} = ysin xysin 2yxsin xy\frac {y sin \ xy}{sin\ 2y-xsin\ xy}