Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx:\frac {dy}{dx}: sin2x+cos2y=1sin^2x+cos^2y=1

Answer

The given relationship is sin2x + cos2y = 1
Differentiating this relationship with respect to x, we obtain
ddx\frac {d}{dx}(sin2x + cos2y) = ddx\frac {d}{dx}(1)

\implies$$\frac {d}{dx}(sin2x) + ddx\frac {d}{dx}(cos2y) = 0

    \implies2sin x . ddx\frac {d}{dx}(sin x) + 2cos y . ddx\frac {d}{dx}(cos y) = 0

    \implies2sin x . cos x + 2cos y (-sin y) . dydx\frac {dy}{dx} = 0

    \impliessin2x - sin2ydydx\frac {dy}{dx} = 0

dydx\frac {dy}{dx} = sin 2xsin 2y\frac {sin\ 2x} {sin\ 2y}