Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac{dy}{dx} of function
yx=xyy^x=x^y

Answer

The correct answer is dydx=yx(yxlogyxylogx)∴\frac{dy}{dx}=\frac{y}{x}(\frac{y-xlogy}{x-ylogx})
The given function is yx=xyy^x=x^y
Taking logarithm on both the sides,we obtain
xlogy=ylogxx\,logy=y\,logx
Differentiating both sides with respect to xx,we obtain
logy.ddx(x)+x.ddx(logy)=logx.ddy(y)+y.ddx(logx)log\,y.\frac{d}{dx}(x)+x.\frac{d}{dx}(logy)=logx.\frac{d}{dy}(y)+y.\frac{d}{dx}(logx)
logy.1+x.1y.dydx=logx.dydx+y.1x⇒logy.1+x.\frac{1}{y}.\frac{dy}{dx}=logx.\frac{dy}{dx}+y.\frac{1}{x}
logy+xydydx=logxdydx+yx⇒logy+\frac{x}{y}\frac{dy}{dx}=logx\frac{dy}{dx}+\frac{y}{x}
(xylogx)dydx=yxlogy⇒(\frac{x}{y}-logx)\frac{dy}{dx}=\frac{y}{x}-logy
(xylogxy)dydx=yxlogyx⇒(\frac{x-ylogx}{y})\frac{dy}{dx}=\frac{y-xlogy}{x}
dydx=yx(yxlogyxylogx)∴\frac{dy}{dx}=\frac{y}{x}(\frac{y-xlogy}{x-ylogx})