Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac{dy}{dx} of function
xy=e(xy)xy=e^{(x-y)}

Answer

The correct answer is dydx=y(x1)x(y+1)∴\frac{dy}{dx}=\frac{y(x-1)}{x(y+1)}
The given function is xy=e(xy)xy=e^{(x-y)}
Taking logarithm on both the sides,we obtain
log(xy)=log(exy)log(xy)=log(e^{x-y})
log(x)+log(y)=(xy)loge⇒log(x)+log(y)=(x-y)loge
logx+logy=(xy)×1⇒logx+logy=(x-y)\times 1
logx+logy=xy⇒logx+logy=x-y
Differentiating both sides with respect to xx,we obtain
ddx(logx)+ddx(logy)=ddx(x)dydx\frac{d}{dx}(logx)+\frac{d}{dx}(logy)=\frac{d}{dx}(x)-\frac{dy}{dx}
1x+1ydydx=1dydx⇒\frac{1}{x}+\frac{1}{y}\frac{dy}{dx}=1-\frac{dy}{dx}
(1+1y)dydx=11x⇒(1+\frac{1}{y})\frac{dy}{dx}=1-\frac{1}{x}
(y+1y)dydx=x1x⇒(\frac{y+1}{y})\frac{dy}{dx}=\frac{x-1}{x}
dydx=y(x1)x(y+1)∴\frac{dy}{dx}=\frac{y(x-1)}{x(y+1)}