Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac{dy}{dx} of function
xy+yx=1x^y+y^x=1

Answer

The correct answer is dydx=yxy1+yxlogyxylogx+xyx1∴\frac{dy}{dx}=\frac{-yx^{y-1}+y^xlogy}{x^ylogx+xy^{x-1}}
The given function is xy+yx=1x^y+y^x=1
Let xy=ux^y =u and yx=vy^x=v
Then, the function becomes u+v=1u+v=1
dudx+dvdx=0....(1)∴\frac{du}{dx}+\frac{dv}{dx}=0 ....(1)
u=xyu=x^y
logu=log(xy)⇒log\,u=log(x^y)
logu=ylogx⇒log\,u=ylogx
Differentiating both sides with respect to xx,we obtain
1ududx=logxdydx+y.ddx(logx)⇒\frac{1}{u}\frac{du}{dx}=logx\frac{dy}{dx}+y.\frac{d}{dx}(logx)
dudx=u[logxdydx+y.1x]⇒\frac{du}{dx}=u[logx\frac{dy}{dx}+y.\frac{1}{x}]
dudx=xy[logxdydx+yx]..(2)⇒\frac{du}{dx}=x^y[logx\frac{dy}{dx}+\frac{y}{x}] ..(2)
v=yxv=y^x
logv=log(yx)⇒log\,v=log(y^x)
logv=xlogy⇒log\,v=xlogy
Differentiating both sides with respect to xx, we obtain
1vdvdx=logy.ddx(x)+x.ddx(logy)\frac{1}{v}\frac{dv}{dx}=logy.\frac{d}{dx}(x)+x.\frac{d}{dx}(logy)
dvdx=v(logy.1+x.1y.dydx)⇒\frac{dv}{dx}=v(logy.1+x.\frac{1}{y}.\frac{dy}{dx})
dvdx=yx(logy+xy.dydx)...(3)⇒\frac{dv}{dx}=y^x(logy+\frac{x}{y}.\frac{dy}{dx}) ...(3)
Therefore,from (1),(2),and(3),we obtain
xy[logxdydx+yx]+yx(logy+xy.dydx)=0x^y[logx\frac{dy}{dx}+\frac{y}{x}]+y^x(logy+\frac{x}{y}.\frac{dy}{dx})=0
(xylogx+xyx1)dydx=(yxy1+yxlogy)⇒(x^ylogx+xy^{x-1})\frac{dy}{dx}=-(yx^{y-1}+y^xlogy)
dydx=yxy1+yxlogyxylogx+xyx1∴\frac{dy}{dx}=\frac{-yx^{y-1}+y^xlogy}{x^ylogx+xy^{x-1}}