Question
Mathematics Question on Continuity and differentiability
Find dxdy of function
(cosx)y=(cosy)x
Answer
The correct answer is ∴dxdy=xtany+logcosxytanx+logcosy
The given function is (cosx)y=(cosy)x
Taking logarithm on both the sides,we obtain
ylogcosx=xlogcosy
Differentiating both sides with respect to x,we obtain
logcosx.dxdy+y.dxd(logcosx)=logcosy.dxd(x)+x.dxd(logcosy)
⇒logcosxdxdy+y.cosx1.dxd(cosx)=logcosy.1+x.cosy1.dxd(cosy)
⇒logcosxdxdy+cosxy.(−sinx)=logcosy+cosyx(−siny).dxdy
⇒logcosxdxdy−ytanx=logcosy−xtanydxdy
⇒(logcosx+xtany)dxdy=ytanx+logcosy
∴dxdy=xtany+logcosxytanx+logcosy