Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac{dy}{dx} of function
(cosx)y=(cosy)x(cosx)^y=(cosy)^x

Answer

The correct answer is dydx=ytanx+logcosyxtany+logcosx∴\frac{dy}{dx}=\frac{ytanx+log\,cosy}{xtany+log\,cosx}
The given function is (cosx)y=(cosy)x(cosx)^y=(cosy)^x
Taking logarithm on both the sides,we obtain
ylogcosx=xlogcosyy\,log\,cosx=x\,log\,cosy
Differentiating both sides with respect to xx,we obtain
logcosx.dydx+y.ddx(logcosx)=logcosy.ddx(x)+x.ddx(logcosy)log\,cosx.\frac{dy}{dx}+y.\frac{d}{dx}(log\,cosx)=log\,cosy.\frac{d}{dx}(x)+x.\frac{d}{dx}(log\,cosy)
logcosxdydx+y.1cosx.ddx(cosx)=logcosy.1+x.1cosy.ddx(cosy)⇒log\,cosx\frac{dy}{dx}+y.\frac{1}{cosx}.\frac{d}{dx}(cosx)=log\,cosy.1+x.\frac{1}{cosy}.\frac{d}{dx}(cosy)
logcosxdydx+ycosx.(sinx)=logcosy+xcosy(siny).dydx⇒log\,cosx\frac{dy}{dx}+\frac{y}{cosx}.(-sinx)=log\,cosy+\frac{x}{cosy}(-siny).\frac{dy}{dx}
logcosxdydxytanx=logcosyxtanydydx⇒log\,cosx\frac{dy}{dx}-ytanx=log\,cosy-xtany\frac{dy}{dx}
(logcosx+xtany)dydx=ytanx+logcosy⇒(log\,cosx+xtany)\frac{dy}{dx}=ytanx+log\,cosy
dydx=ytanx+logcosyxtany+logcosx∴\frac{dy}{dx}=\frac{ytanx+log\,cosy}{xtany+log\,cosx}