Solveeit Logo

Question

Mathematics Question on limits and derivatives

Find dydx,\frac{dy}{dx}, if y=sin2x+cos4xy={{\sin }^{2}}x+{{\cos }^{4}}x

A

sin4x4\frac{-\sin \,4x}{4}

B

sin2x2\frac{-\sin \,2x}{2}

C

sin4x4\frac{\sin \,4x}{4}

D

sin4x2\frac{-\sin \,4x}{2}

Answer

sin4x2\frac{-\sin \,4x}{2}

Explanation

Solution

We have y=sin2x+cos4xy={{\sin }^{2}}x+{{\cos }^{4}}x
\therefore dydx=2sinxcosx+4cos3x(sinx)\frac{dy}{dx}=2\sin x\operatorname{cosx}+4co{{s}^{3}}x(-\sin \,x)
=sin2x4sinxcosx(cos2x)=\sin 2x-4\sin x\cos x({{\cos }^{2}}x)
=sin2x2sin2x(cos2x+12)=\sin 2x-2\sin 2x\left( \frac{\cos 2x+1}{2} \right)
=sin2xsin2xcos2xsin2x=\sin 2x-sin\,2x\,\cos \,2x-\,\sin \,2x
=sin2xcos2x=sin4x2=-\sin 2x\,\cos \,2x=\frac{-\sin \,4x}{2}