Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac{dy}{dx}, if y=sin-1x+sin-11x2\sqrt{1-x^2}, -1≤x≤1

Answer

It is given that ,y=sin-1x+sin-11x2\sqrt{1-x^2}
dydx\frac{dy}{dx}=ddx\frac{d}{dx}(sin-1x+sin-11x2\sqrt{1-x^2})
\Rightarrow dydx\frac{dy}{dx}=ddx\frac{d}{dx}(sin-1x)+ddx\frac{d}{dx}(sin-11x2\sqrt{1-x^2})
\Rightarrow dydx\frac{dy}{dx}=11x2\frac{1}{\sqrt{1-x^2}}+11(1x2)2\frac{1}{1-(\sqrt{1-x^2})^2}.ddx\frac{d}{dx}(1x2\sqrt{1-x^2})
\Rightarrow dydx\frac{dy}{dx}=11x2\frac{1}{\sqrt{1-x^2}}+1x\frac{1}{x}.\frac{1}{2}$$\sqrt{1-x^2}.ddx\frac{d}{dx}(1-x2)
\Rightarrow dydx\frac{dy}{dx}=11x2\frac{1}{\sqrt{1-x^2}}+12x1x2(2x)\frac{1}{2x\sqrt{1-x^2}(-2x)}
\Rightarrow dydx\frac{dy}{dx}=11x2\frac{1}{\sqrt{1-x^2}}-11x2\frac{1}{\sqrt{1-x^2}}
dydx\frac{dy}{dx}=0