Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac{dy}{dx},if y=12(1-cost),x=10(t-sint),π2-\frac{\pi}{2}<t<π2\frac{\pi}{2}

Answer

It is given that ,y=12(1-cost),x=10(t-sint)
dydx\frac{dy}{dx}=ddt\frac{d}{dt}(10(t-sint))=10.ddt\frac{d}{dt}(t-sint)=10(1-cost)
dydt\frac{dy}{dt}=ddt\frac{d}{dt}[12(1-cost)]=12.ddt\frac{d}{dt}(1-cost)=12.[0-(-sint)]=12sint
dydt\frac{dy}{dt}=dydtdxdt\frac{\frac{dy}{dt}}{\frac{dx}{dt}} =12sint10(1cost)\frac{12sin\,t}{10(1-cos\,t)}
=12.2sint2cost210.2sin2t2\frac{12.2sin\frac{t}{2}cos\frac{t}{2}}{10.2sin\frac{2t}{2}}=65cott2\frac{6}{5}cot\frac{t}{2}