Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac {dy}{dx}: ax+by2=cos yax+by^2=cos\ y

Answer

The given relationship is ax+by2 = cos y
Differentiating this relationship with respect to x, we obtain
ddx\frac {d}{dx}(ax+by2) = ddx\frac {d}{dx}(cos y)

\implies$$\frac {d}{dx}(ax)+ddx\frac {d}{dx}(by2) = ddx\frac {d}{dx}(cosy)

    \impliesa+bddx\frac {d}{dx}(y2) = ddx\frac {d}{dx}(cos y) …...…….(1)

Using chain rule,we obtain ddx\frac {d}{dx}(y2) = 2ydydx\frac {dy}{dx} and ddx\frac {d}{dx}(cosy) = -siny dydx\frac {dy}{dx} ………....(2)
From (1) and (2), we obtain
a+b.2ydydx\frac {dy}{dx} = -sin y.dydx\frac {dy}{dx}

    \implies(2by+sin y)dydx\frac {dy}{dx} = -a

dydx\frac {dy}{dx} = a2by+sin y\frac {-a}{2by+sin\ y}