Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

FindFind dydx\frac {dy}{dx}: 2x+3y=sin y2x+3y=sin \ y

Answer

The given relationship is 2x + 3y = sin y
Differentiating this relationship with respect to x, we obtain
ddx\frac {d}{dx}(2x + 3y) = ddx\frac {d}{dx}(sin y)
\implies$$\frac {d}{dx}(2x) + ddx\frac {d}{dx}(3y) = ddx\frac {d}{dx}(sin y)
    \implies2 + 3dydx\frac {dy}{dx} = cos y. dydx\frac {dy}{dx}
    \implies2 = (cos y - 3).dydx\frac {dy}{dx}
dydx\frac {dy}{dx} = 2cos y3\frac {2}{cos\ y-3}