Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx\frac {dy}{dx}: 2x+3y=sin x2x+3y=sin\ x

Answer

The given relationship is 2x + 3y = sin x
Differentiating this relationship with respect to x, we obtain
ddx\frac {d}{dx}(2x + 3y) = ddx\frac {d}{dx}(sin x)

\implies$$\frac {d}{dx}(2x) + ddx\frac {d}{dx}(3y) = cos x

    \implies2 + 3dydx\frac {dy}{dx} = cos x

    \implies3dydx\frac {dy}{dx} = cos x - 2

dydx\frac {dy}{dx} = cos x23\frac {cos\ x -2}{3}