Solveeit Logo

Question

Question: Find flux through the given surface due to a charge q kept at (0, 0, 4a) as shown....

Find flux through the given surface due to a charge q kept at (0, 0, 4a) as shown.

Answer

q/(40ε₀)

Explanation

Solution

To find the flux through the given surface, we will use the definition of electric flux:

Φ=EdA\Phi = \int \vec{E} \cdot d\vec{A}

The charge q is located at (0, 0, 4a). Let this be P_q = (0, 0, 4a). The surface is a quarter-circle in the xy-plane (z=0), bounded by x=0, y=0, and the circular arc x^2 + y^2 = (3a)^2. The radius of this quarter-disk is R = 3a.

1. Determine the Electric Field (E\vec{E}): The electric field E\vec{E} due to a point charge q at position rq\vec{r}_q at a point r\vec{r} is given by:

E=14πε0qrrq3(rrq)\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\vec{r} - \vec{r}_q|^3} (\vec{r} - \vec{r}_q)

Let a point on the surface be r=(x,y,0)\vec{r} = (x, y, 0). Then, rrq=(x0)i^+(y0)j^+(04a)k^=xi^+yj^4ak^\vec{r} - \vec{r}_q = (x - 0)\hat{i} + (y - 0)\hat{j} + (0 - 4a)\hat{k} = x\hat{i} + y\hat{j} - 4a\hat{k}. The magnitude squared is rrq2=x2+y2+(4a)2=x2+y2+16a2|\vec{r} - \vec{r}_q|^2 = x^2 + y^2 + (-4a)^2 = x^2 + y^2 + 16a^2. So, the electric field at a point (x, y, 0) on the surface is:

E=q4πε0xi^+yj^4ak^(x2+y2+16a2)3/2\vec{E} = \frac{q}{4\pi\varepsilon_0} \frac{x\hat{i} + y\hat{j} - 4a\hat{k}}{(x^2 + y^2 + 16a^2)^{3/2}}

2. Determine the Area Vector (dAd\vec{A}): The surface lies in the z=0 plane. The differential area vector dAd\vec{A} can be taken as dxdyk^dx dy \hat{k} (normal pointing in the positive z-direction).

3. Calculate the Dot Product (EdA\vec{E} \cdot d\vec{A}):

EdA=(q4πε0xi^+yj^4ak^(x2+y2+16a2)3/2)(dxdyk^)\vec{E} \cdot d\vec{A} = \left( \frac{q}{4\pi\varepsilon_0} \frac{x\hat{i} + y\hat{j} - 4a\hat{k}}{(x^2 + y^2 + 16a^2)^{3/2}} \right) \cdot (dx dy \hat{k}) EdA=q4πε04a(x2+y2+16a2)3/2dxdy\vec{E} \cdot d\vec{A} = \frac{q}{4\pi\varepsilon_0} \frac{-4a}{(x^2 + y^2 + 16a^2)^{3/2}} dx dy

4. Set up the Integral: The flux Φ\Phi is the integral of this expression over the quarter-disk surface. It is convenient to use cylindrical coordinates for this integration. In cylindrical coordinates:

  • x2+y2=ρ2x^2 + y^2 = \rho^2
  • dxdy=ρdρdϕdx dy = \rho d\rho d\phi

The limits of integration for the quarter-disk in the first quadrant are:

  • ρ\rho from 00 to 3a3a (radius of the disk)
  • ϕ\phi from 00 to π/2\pi/2 (for the first quadrant)
Φ=0π/203aq4πε04a(ρ2+16a2)3/2ρdρdϕ\Phi = \int_{0}^{\pi/2} \int_{0}^{3a} \frac{q}{4\pi\varepsilon_0} \frac{-4a}{(\rho^2 + 16a^2)^{3/2}} \rho d\rho d\phi

We can pull the constants out of the integral:

Φ=4aq4πε00π/2dϕ03aρ(ρ2+16a2)3/2dρ\Phi = \frac{-4aq}{4\pi\varepsilon_0} \int_{0}^{\pi/2} d\phi \int_{0}^{3a} \frac{\rho}{(\rho^2 + 16a^2)^{3/2}} d\rho

5. Evaluate the Integrals: First, evaluate the integral with respect to ϕ\phi:

0π/2dϕ=[ϕ]0π/2=π2\int_{0}^{\pi/2} d\phi = [\phi]_{0}^{\pi/2} = \frac{\pi}{2}

Next, evaluate the integral with respect to ρ\rho:

Iρ=03aρ(ρ2+16a2)3/2dρI_{\rho} = \int_{0}^{3a} \frac{\rho}{(\rho^2 + 16a^2)^{3/2}} d\rho

Let u=ρ2+16a2u = \rho^2 + 16a^2. Then du=2ρdρdu = 2\rho d\rho, so ρdρ=12du\rho d\rho = \frac{1}{2} du. When ρ=0\rho = 0, u=02+16a2=16a2u = 0^2 + 16a^2 = 16a^2. When ρ=3a\rho = 3a, u=(3a)2+16a2=9a2+16a2=25a2u = (3a)^2 + 16a^2 = 9a^2 + 16a^2 = 25a^2.

Iρ=16a225a212u3/2duI_{\rho} = \int_{16a^2}^{25a^2} \frac{1}{2} u^{-3/2} du Iρ=12[u1/21/2]16a225a2=[1u]16a225a2I_{\rho} = \frac{1}{2} \left[ \frac{u^{-1/2}}{-1/2} \right]_{16a^2}^{25a^2} = - \left[ \frac{1}{\sqrt{u}} \right]_{16a^2}^{25a^2} Iρ=(125a2116a2)=(15a14a)I_{\rho} = - \left( \frac{1}{\sqrt{25a^2}} - \frac{1}{\sqrt{16a^2}} \right) = - \left( \frac{1}{5a} - \frac{1}{4a} \right) Iρ=(4520a)=(120a)=120aI_{\rho} = - \left( \frac{4 - 5}{20a} \right) = - \left( \frac{-1}{20a} \right) = \frac{1}{20a}

6. Combine the Results: Substitute the evaluated integrals back into the flux equation:

Φ=4aq4πε0(π2)(120a)\Phi = \frac{-4aq}{4\pi\varepsilon_0} \left( \frac{\pi}{2} \right) \left( \frac{1}{20a} \right) Φ=4aq4πε0π40a\Phi = \frac{-4aq}{4\pi\varepsilon_0} \frac{\pi}{40a} Φ=q4πε04aπ40a=q4πε0π10\Phi = \frac{-q}{4\pi\varepsilon_0} \frac{4a\pi}{40a} = \frac{-q}{4\pi\varepsilon_0} \frac{\pi}{10} Φ=q40ε0\Phi = \frac{-q}{40\varepsilon_0}

The negative sign indicates that the electric field lines are entering the surface, given that the normal vector was chosen in the positive z-direction and the charge is at positive z. If the question asks for the magnitude of the flux, it would be q/(40ε0)q/(40\varepsilon_0).

The final answer is q40ε0\frac{q}{40\varepsilon_0}.

Explanation of the solution: The electric flux through an open surface is calculated by integrating the dot product of the electric field and the differential area vector over the surface.

  1. Define Electric Field: The electric field E\vec{E} due to the point charge q at (0, 0, 4a) is determined at a generic point (x, y, 0) on the surface.
  2. Define Area Vector: The surface is in the xy-plane, so its differential area vector is dA=dxdyk^d\vec{A} = dx dy \hat{k}.
  3. Calculate Dot Product: Compute EdA\vec{E} \cdot d\vec{A}. This gives the component of the electric field perpendicular to the surface.
  4. Set up Integral: Convert the Cartesian coordinates to cylindrical coordinates (ρ,ϕ\rho, \phi) for easier integration, as the surface is a quarter-disk. The limits for ρ\rho are 0 to 3a, and for ϕ\phi are 0 to π/2.
  5. Evaluate Integral: Perform the integration step by step, first with respect to ϕ\phi and then with respect to ρ\rho using a substitution method.
  6. Final Result: Combine the results of the integration to obtain the total electric flux. The negative sign indicates that the field lines are entering the surface if the normal is chosen as positive z. The magnitude of the flux is q/(40ε0)q/(40\varepsilon_0).