Solveeit Logo

Question

Question: Find \[{{f}^{1}}\left( x \right)\]. \[f\left( x \right)={{\cos }^{2}}\left( 3\sqrt{x} \right)\]...

Find f1(x){{f}^{1}}\left( x \right).
f(x)=cos2(3x)f\left( x \right)={{\cos }^{2}}\left( 3\sqrt{x} \right)

Explanation

Solution

Hint:To solve the above problem we have to know the basic derivatives of cosx\cos xand x\sqrt{x}. After writing the derivatives rewrite the equation with the derivatives of the function.
ddx(cosx)=sinx\dfrac{d}{dx}\left( \cos x \right)=-\sin x, ddxx=12x\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}. We can see one function is inside another we have to find internal derivatives.

Complete step-by-step answer:
Therefore derivative of the given function is,
f1(x)=ddx(cos2(3x)){{f}^{1}}\left( x \right)=\dfrac{d}{dx}\left( {{\cos }^{2}}\left( 3\sqrt{x} \right) \right)
We know the derivative of cosx\cos xand x\sqrt{x} . By writing the derivatives we get,
Further solving we get the derivative of the function as
=2cos(3x)ddx(cos(3x))=2\cos (3\sqrt{x})\dfrac{d}{dx}\left( \cos (3\sqrt{x}) \right). . . . . . . . . . . . . . . . . . . (3)
By solving we get, we are solving for internal derivative,
=2cos(3x)(sin(3x)ddx(3x)=2\cos (3\sqrt{x})(-\sin \left( 3\sqrt{x} \right)\dfrac{d}{dx}\left( 3\sqrt{x} \right)
=2cos(3x)(sin(3x)(32x)=2\cos (3\sqrt{x})(-\sin \left( 3\sqrt{x} \right)\left( \dfrac{3}{2\sqrt{x}} \right)
=62xcos(3x)sin(3x)=-\dfrac{6}{2\sqrt{x}}\cos (3\sqrt{x})\sin (3\sqrt{x})
The derivative of the given function is =3xcos(3x)sin(3x)=-\dfrac{3}{\sqrt{x}}\cos (3\sqrt{x})\sin (3\sqrt{x})

Note: In the above problem we have solved the derivative of the trigonometric function. In (3) the formation of 12x\dfrac{1}{2\sqrt{x}}is due to function in a function. In this case we have to find an internal derivative. If we are doing derivative means we are finding the slope of a function. Care should be taken while doing calculations.f(x)=cos2(3x)f\left( x \right)={{\cos }^{2}}\left( 3\sqrt{x} \right). . . . . . . . . . . . . . . . . . . . . (a)
ddx(cosx)=sinx\dfrac{d}{dx}\left( \cos x \right)=-\sin x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
ddxx=12x\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting (1) and (2) in (a) we get,