Solveeit Logo

Question

Mathematics Question on Straight lines

Find equation of the line which is equidistant from parallel lines 9x + 6y - 7 = 0 and 3x + 2y + 6 = 0.

Answer

The equations of the given lines are
9x+6y\-7=0(1)9x + 6y \- 7 = 0 … (1)
3x+2y+6=0(2)3x + 2y + 6 = 0 … (2)
Let P (h, k) be the arbitrary point that is equidistant from lines (1) and (2).
The perpendicular distance of P (h, k) from line (1) is given by

d1=9h+6k7(9)2+(6)2d_1=\frac{\left|9h+6k-7\right|}{\sqrt{(9)^2+(6)^2}}

=9h+6k7117=\frac{\left|9h+6k-7\right|}{\sqrt{117}}

=9h+6k7313=\frac{\left|9h+6k-7\right|}{3\sqrt{13}}

The perpendicular distance of P (h, k) from line (2) is given by

d2=3h+2k+6(3)2+(2)2d_2=\frac{\left|3h+2k+6\right|}{\sqrt{(3)^2+(2)^2}}

=3h+2k+613=\frac{\left|3h+2k+6\right|}{\sqrt{13}}

Since P (h, k) is equidistant from lines (1) and (2), d1=d2d_1=d_2

\frac{\left|9h+6k-7\right|}{3\sqrt{13}}$$=\frac{\left|3h+2k+6\right|}{\sqrt{13}}

9h+6k7=33h+2k+6⇒ |9h+6k-7|=3|3h+2k+6|

9h+6k7=±3(3h+2k+6)⇒ |9h+6k-7|=±3(3h+2k+6)

9h+6k7=3(3h+2k+6)⇒ 9h+6k-7=3(3h+2k+6) or 9h+6k7=3(3h+2k+6)9h+6k-7=-3(3h+2k+6)

The case 9h+6k7=3(3h+2k+6)9h+6k-7=3(3h+2k+6) is not possible.
9h+6k7=3(3h+2k+6)7=189h+6k-7=3(3h+2k+6) ⇒ -7=18 (which is absurd)

9h+6k7=3(3h+2k+6)∴ 9h+6k-7=-3(3h+2k+6)
9h+6k7=\-9h\-6k\-189h + 6k - 7 = \- 9h \- 6k \- 18
18h+12k+11=0⇒ 18h + 12k + 11 = 0

Thus, the required equation of the line is 18x+12y+11=0.18x + 12y + 11 = 0.