Solveeit Logo

Question

Question: Find electric field due to uniformly charged hemispherical cap having charge density $\sigma$ at poi...

Find electric field due to uniformly charged hemispherical cap having charge density σ\sigma at point P :-

Answer

E=σ4ϵ0z^\mathbf{E} = \frac{\sigma}{4\epsilon_0}\,\hat{z}

Explanation

Solution

We wish to find the electric field at point PP (the top of the hemispherical cap) due to a uniformly charged hemispherical cap of radius RR and surface charge density σ\sigma.

  1. Setup:
    Use spherical coordinates where a point on the cap is given by (R,θ,ϕ)(R, \theta, \phi) with:

    • θ\theta from 00 to π/2\pi/2 (since the cap is a hemisphere)
    • ϕ\phi from 00 to 2π2\pi
  2. Choosing an Element of Charge:
    The surface element is

    dA=R2sinθdθdϕ.dA = R^2 \sin\theta\, d\theta\, d\phi.

    Its charge is

    dq=σdA=σR2sinθdθdϕ.dq = \sigma\, dA = \sigma R^2 \sin\theta\, d\theta\, d\phi.
  3. Contribution to the Electric Field:
    The field from dqdq at PP (which is on the axis through the center of curvature) is given by Coulomb's law:

    dE=14πϵ0dqR2r^,d\mathbf{E} = \frac{1}{4\pi\epsilon_0}\frac{dq}{R^2}\hat{\mathbf{r}},

    where the distance from each element to point PP is RR (due to the symmetry of the spherical surface) and r^\hat{\mathbf{r}} will have a component along the vertical (z-) direction given by cosθ\cos\theta. Hence, the vertical component is

    dEz=14πϵ0σR2sinθdθdϕR2cosθ=σ4πϵ0sinθcosθdθdϕ.dE_z = \frac{1}{4\pi\epsilon_0}\frac{\sigma R^2 \sin\theta\, d\theta\, d\phi}{R^2}\cos\theta = \frac{\sigma}{4\pi\epsilon_0}\sin\theta \cos\theta\, d\theta\, d\phi.
  4. Integrating:
    Integrate over the entire cap:

    Ez=σ4πϵ0ϕ=02πdϕθ=0π/2sinθcosθdθ.E_z = \frac{\sigma}{4\pi\epsilon_0}\int_{\phi=0}^{2\pi}\,d\phi\int_{\theta=0}^{\pi/2} \sin\theta\cos\theta\, d\theta.

    The ϕ\phi-integral gives:

    02πdϕ=2π.\int_{0}^{2\pi} d\phi = 2\pi.

    The θ\theta-integral:

    0π/2sinθcosθdθ.\int_{0}^{\pi/2}\sin\theta\cos\theta\,d\theta.

    Use the substitution u=sinθu=\sin\theta so du=cosθdθdu=\cos\theta\,d\theta. When θ=0\theta=0, u=0u=0; when θ=π/2\theta=\pi/2, u=1u=1. Thus,

    01udu=12.\int_{0}^{1} u\,du = \frac{1}{2}.

    Putting it together:

    Ez=σ4πϵ0(2π)(12)=σ4ϵ0.E_z = \frac{\sigma}{4\pi\epsilon_0}(2\pi)\left(\frac{1}{2}\right) = \frac{\sigma}{4\epsilon_0}.
  5. Result:
    The net electric field at PP is:

    E=σ4ϵ0z^.\mathbf{E} = \frac{\sigma}{4\epsilon_0}\,\hat{z}.