Solveeit Logo

Question

Question: Find DRG of \(f(x) = 2024 + \sqrt{2x - 1 + 2\sqrt{x^2 - x}} \;-\; \sqrt{x - 1}\)...

Find DRG of f(x)=2024+2x1+2x2x    x1f(x) = 2024 + \sqrt{2x - 1 + 2\sqrt{x^2 - x}} \;-\; \sqrt{x - 1}

Answer

x1x \ge 1

Explanation

Solution

Step 1. Under the first radical:

2x1+2x2x=(x+x1)2,2x - 1 + 2\sqrt{x^2 - x} = (\sqrt{x} + \sqrt{x - 1})^2,

valid for x1x\ge1.

Step 2. Thus

2x1+2x2x=(x+x1)2=x+x1.\sqrt{2x - 1 + 2\sqrt{x^2 - x}} = \sqrt{(\sqrt{x} + \sqrt{x - 1})^2} = \sqrt{x} + \sqrt{x - 1}.

Step 3. Substituting back,

f(x)=2024+(x+x1)x1=2024+x.f(x) = 2024 + (\sqrt{x} + \sqrt{x - 1}) - \sqrt{x - 1} = 2024 + \sqrt{x}.

Domain condition:
Both x1\sqrt{x - 1} and x\sqrt{x} require x1x \ge 1.
Therefore, the domain (DRG) is

x1.\boxed{x \ge 1}.