Question
Question: Find domain of the function \[f\left( x \right)=\sqrt{{{\log }_{x}}\left( \cos 2\pi x \right)}\]?...
Find domain of the function f(x)=logx(cos2πx)?
Solution
We start solving the problem by applying the property that the function g(x) is valid if and only if the values of g(x)≥0 for the function logx(cos2πx). We then recall the properties of logarithmic function {{\log }_{a}}b=\left\\{ \begin{array}{*{35}{l}} +ve,\text{ if }a > 1,b > 1 \\\ +ve,\text{ if }0 < a < 1,0 < b < 1 \\\ 0,\text{ if }b=1,a > 0\text{ }and\text{ }a\ne 1 \\\ -ve,\text{ if }a > 1,0 < b < 1 \\\ -ve,\text{ if }0 < a < 1,b > 1 \\\ \end{array} \right. and apply those which are feasible for logx(cos2πx)≥0. We then make the necessary calculations to find the domain for the feasible properties which in turn gives us the domain of the function f(x).
Complete step-by-step answer :
According to the problem, we need to find the domain of the function f(x)=logx(cos2πx).
We know that the function g(x) is valid if and only if the values of g(x)≥0.
So, we have logx(cos2πx)≥0 ---(1).
We know that the properties of the logarithmic function logab is defined as follows: