Question
Question: Find \(\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1\). A. \(2\sin 2\theta \) ...
Find sinθ+cosθsin3θ−cos3θ+1.
A. 2sin2θ
B. 2cos2θ
C. tan2θ
D. cot2θ
Solution
We first use multiple angle formulas and complete the summation with 1. We use the identity formulas like sin2θ+cos2θ=1, 2sinθcosθ=sin2θ. Then we take 4(sinθ+cosθ) common to cancel it out from the denominator.
Complete answer:
We have the trigonometric multiple angle formula where sin3θ=3sinθ−4sin3θ and cos3θ=4cos3θ−3cosθ.
We place these values in sinθ+cosθsin3θ−cos3θ+1 and simplify
sinθ+cosθsin3θ−cos3θ+1=sinθ+cosθ3sinθ−4sin3θ−4cos3θ+3cosθ+1=sinθ+cosθ4sinθ−4sin3θ−4cos3θ+4cosθ
Now we try to take 4 common and factorise the numerator.
4sinθ−4sin3θ−4cos3θ+4cosθ=4(sinθ+cosθ)−4(sin3θ+cos3θ)
We use the cubic expansion as a3+b3=(a+b)(a2+b2−ab).
So, we get sin3θ+cos3θ=(sinθ+cosθ)(sin2θ+cos2θ−sinθcosθ).
We know the identity value of sin2θ+cos2θ=1.
So, sin3θ+cos3θ=(sinθ+cosθ)(1−sinθcosθ).
We now again take common of (sinθ+cosθ).
4(sinθ+cosθ)−4(sin3θ+cos3θ)=4(sinθ+cosθ)−4(sinθ+cosθ)(1−sinθcosθ)=4(sinθ+cosθ)(1−1+sinθcosθ)=4sinθcosθ(sinθ+cosθ)
The fraction form becomes sinθ+cosθsin3θ−cos3θ+1=(sinθ+cosθ)4sinθcosθ(sinθ+cosθ)=4sinθcosθ.
We know the identity formula of 2sinθcosθ=sin2θ.
So, 4sinθcosθ=2(2sinθcosθ)=2sin2θ.
Final solution is sinθ+cosθsin3θ−cos3θ+1=2sin2θ.
And hence the correct answer is option A.
Note:
It is important to remember that the condition to eliminate the (sinθ+cosθ) from both denominator and numerator is (sinθ+cosθ)=0. No domain is given for the variable x. The value of tanx=−1 is essential. The simplified condition will be x=nπ−4π,n∈Z.