Solveeit Logo

Question

Question: Find \(\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1\). A. \(2\sin 2\theta \) ...

Find sin3θcos3θsinθ+cosθ+1\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1.
A. 2sin2θ2\sin 2\theta
B. 2cos2θ2\cos 2\theta
C. tan2θ\tan 2\theta
D. cot2θ\cot 2\theta

Explanation

Solution

We first use multiple angle formulas and complete the summation with 1. We use the identity formulas like sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, 2sinθcosθ=sin2θ2\sin \theta \cos \theta =\sin 2\theta . Then we take 4(sinθ+cosθ)4\left( \sin \theta +\cos \theta \right) common to cancel it out from the denominator.

Complete answer:
We have the trigonometric multiple angle formula where sin3θ=3sinθ4sin3θ\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta and cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta .
We place these values in sin3θcos3θsinθ+cosθ+1\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1 and simplify
sin3θcos3θsinθ+cosθ+1 =3sinθ4sin3θ4cos3θ+3cosθsinθ+cosθ+1 =4sinθ4sin3θ4cos3θ+4cosθsinθ+cosθ \begin{aligned} & \dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1 \\\ & =\dfrac{3\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +3\cos \theta }{\sin \theta +\cos \theta }+1 \\\ & =\dfrac{4\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +4\cos \theta }{\sin \theta +\cos \theta } \\\ \end{aligned}
Now we try to take 4 common and factorise the numerator.
4sinθ4sin3θ4cos3θ+4cosθ =4(sinθ+cosθ)4(sin3θ+cos3θ) \begin{aligned} & 4\sin \theta -4{{\sin }^{3}}\theta -4{{\cos }^{3}}\theta +4\cos \theta \\\ & =4\left( \sin \theta +\cos \theta \right)-4\left( {{\sin }^{3}}\theta +{{\cos }^{3}}\theta \right) \\\ \end{aligned}
We use the cubic expansion as a3+b3=(a+b)(a2+b2ab){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right).
So, we get sin3θ+cos3θ=(sinθ+cosθ)(sin2θ+cos2θsinθcosθ){{\sin }^{3}}\theta +{{\cos }^{3}}\theta =\left( \sin \theta +\cos \theta \right)\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta -\sin \theta \cos \theta \right).
We know the identity value of sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.
So, sin3θ+cos3θ=(sinθ+cosθ)(1sinθcosθ){{\sin }^{3}}\theta +{{\cos }^{3}}\theta =\left( \sin \theta +\cos \theta \right)\left( 1-\sin \theta \cos \theta \right).
We now again take common of (sinθ+cosθ)\left( \sin \theta +\cos \theta \right).
4(sinθ+cosθ)4(sin3θ+cos3θ) =4(sinθ+cosθ)4(sinθ+cosθ)(1sinθcosθ) =4(sinθ+cosθ)(11+sinθcosθ) =4sinθcosθ(sinθ+cosθ) \begin{aligned} & 4\left( \sin \theta +\cos \theta \right)-4\left( {{\sin }^{3}}\theta +{{\cos }^{3}}\theta \right) \\\ & =4\left( \sin \theta +\cos \theta \right)-4\left( \sin \theta +\cos \theta \right)\left( 1-\sin \theta \cos \theta \right) \\\ & =4\left( \sin \theta +\cos \theta \right)\left( 1-1+\sin \theta \cos \theta \right) \\\ & =4\sin \theta \cos \theta \left( \sin \theta +\cos \theta \right) \\\ \end{aligned}
The fraction form becomes sin3θcos3θsinθ+cosθ+1=4sinθcosθ(sinθ+cosθ)(sinθ+cosθ)=4sinθcosθ\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=\dfrac{4\sin \theta \cos \theta \left( \sin \theta +\cos \theta \right)}{\left( \sin \theta +\cos \theta \right)}=4\sin \theta \cos \theta .
We know the identity formula of 2sinθcosθ=sin2θ2\sin \theta \cos \theta =\sin 2\theta .
So, 4sinθcosθ=2(2sinθcosθ)=2sin2θ4\sin \theta \cos \theta =2\left( 2\sin \theta \cos \theta \right)=2\sin 2\theta .
Final solution is sin3θcos3θsinθ+cosθ+1=2sin2θ\dfrac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=2\sin 2\theta .
And hence the correct answer is option A.

Note:
It is important to remember that the condition to eliminate the (sinθ+cosθ)\left( \sin \theta +\cos \theta \right) from both denominator and numerator is (sinθ+cosθ)0\left( \sin \theta +\cos \theta \right)\ne 0. No domain is given for the variable xx. The value of tanx1\tan x\ne -1 is essential. The simplified condition will be xnππ4,nZx\ne n\pi -\dfrac{\pi }{4},n\in \mathbb{Z}.