Solveeit Logo

Question

Question: Find \(\dfrac{dy}{dx}\) where \(y=\log \left( \sec x \right)\) for \(0\le x\le \dfrac{\pi }{2}\)....

Find dydx\dfrac{dy}{dx} where y=log(secx)y=\log \left( \sec x \right) for 0xπ20\le x\le \dfrac{\pi }{2}.

Explanation

Solution

Assume sec x as t and differentiate it, we get value of dt.By substituting value of sec x as t in given equation we get log t and differentiate this equation with respect to x by using product rule and substitute the values of t and dt to get required answer.

“Complete step-by-step answer:”
Given, y=log(secx)y=\log \left( \sec x \right).
Let us assume sec x to be t.
t=secx\Rightarrow t=\sec x
Differentiating both sides, we get:
dt=secxtanxdx dtdx=secxtanx y=logt dydx=(dydt)×(dtdx) dydx=ddt(logt)×ddx(secx) dydx=1t×secxtanx \begin{aligned} & dt=\sec x\tan xdx \\\ & \Rightarrow \dfrac{dt}{dx}=\sec x\tan x \\\ & y=\log t \\\ & \dfrac{dy}{dx}=\left( \dfrac{dy}{dt} \right)\times \left( \dfrac{dt}{dx} \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dt}\left( \log t \right)\times \dfrac{d}{dx}\left( \sec x \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{t}\times \sec x\tan x \\\ \end{aligned}
Putting the value of t = sec x in the above equation we get,
dydx=1secx×secxtanx dydx=tanx \begin{aligned} & \dfrac{dy}{dx}=\dfrac{1}{\sec x}\times \sec x\tan x \\\ & \therefore \dfrac{dy}{dx}=\tan x \\\ \end{aligned}
Therefore, the answer is tan x.

Note: In the given question, we have used the product rule which is:
dydx=dydt×dtdm×dmdx\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dm}\times \dfrac{dm}{dx}
Also, don’t get confused by the fact that it is mentioned x[0,π2]x\in \left[ 0,\dfrac{\pi }{2} \right].
It is mentioned to define the domain of log.