Solveeit Logo

Question

Question: Find \(\dfrac{{dy}}{{dx}}\)where\({x^y} = {y^x};{\text{ x > 0,y > 0}}\)....

Find dydx\dfrac{{dy}}{{dx}}wherexy=yx; x > 0,y > 0{x^y} = {y^x};{\text{ x > 0,y > 0}}.

Explanation

Solution

HInt: here you can take log both sides and then use rules of differentiation to make it easy.
We have to find the derivative of xy=yx; x > 0,y > 0{x^y} = {y^x};{\text{ x > 0,y > 0}}
So let’s take log both sides we get
log(xy)=log(yx)\log ({x^y}) = \log ({y^x})
Using the property of logarithm thatlog(ab)=bloga\log ({a^b}) = b\log a, we can write above as
y×logx=x×logyy \times \log x = x \times \log y
Now let’s differentiate both the sides with respect to xx using the product rule of derivative and chain rule we have
dydx×logx+y×1x=1×logy+x×1ydydx\dfrac{{dy}}{{dx}} \times \log x + y \times \dfrac{1}{x} = 1 \times \log y + x \times \dfrac{1}{y}\dfrac{{dy}}{{dx}}
Let’s take dydx\dfrac{{dy}}{{dx}}terms to left hand side
dydx(logxxy)=logyyx\Rightarrow \dfrac{{dy}}{{dx}}\left( {\log x - \dfrac{x}{y}} \right) = \log y - \dfrac{y}{x}
So our dydx\dfrac{{dy}}{{dx}}is
dydx=logyyxlogxxy\dfrac{{dy}}{{dx}} = \dfrac{{\log y - \dfrac{y}{x}}}{{\log x - \dfrac{x}{y}}}
dydx=xlogyyxylogxxy\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{x\log y - y}}{x}}}{{\dfrac{{y\log x - x}}{y}}}
Let’s simplify it further
dydx=xlogyyylogxx(yx)\dfrac{{dy}}{{dx}} = \dfrac{{x\log y - y}}{{y\log x - x}}\left( {\dfrac{y}{x}} \right)
Note-The key concept to solve such a problem statement is to take logarithm both sides and apply the property of log as mentioned above before differentiating , this always will take you to the right answer.