Solveeit Logo

Question

Question: Find \[\dfrac{dy}{dx}\] of \[y=\tan {{x}^{\cot x}}+\cot {{x}^{\tan x}}\]....

Find dydx\dfrac{dy}{dx} of y=tanxcotx+cotxtanxy=\tan {{x}^{\cot x}}+\cot {{x}^{\tan x}}.

Explanation

Solution

In this question, we will use sum rule ddx(a+b)=ddxa+ddxb\dfrac{d}{dx}\left( a+b \right)=\dfrac{d}{dx}a+\dfrac{d}{dx}b, product rule ddx(a.b)=bddxa+addxb\dfrac{d}{dx}\left( a.b \right)=b\dfrac{d}{dx}a+a\dfrac{d}{dx}b. ddx(tanx)=sec2x\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x,ddxcotx=csc2x\dfrac{d}{dx}\cot x=-{{\csc }^{2}}x, ddxlogx=1xdx\dfrac{d}{dx}\log x=\dfrac{1}{x}dxthese are some basic trigonometric formulas used in this question.

Complete step by step answer:
From the question it is clear that we have to find dydx\dfrac{dy}{dx} of y=tanxcotx+cotxtanxy=\tan {{x}^{\cot x}}+\cot {{x}^{\tan x}}.
y=tanxcotx+cotxtanx\Rightarrow y=\tan {{x}^{\cot x}}+\cot {{x}^{\tan x}}…………(1)
Let us proceed to solve this question by taking tanxcotx=u\tan {{x}^{\cot x}}=u and cotxtanx=v\cot {{x}^{\tan x}}=v so that we can write y=u+vy=u+v.
So, from sum rule, we can write
dydx=ddx(u+v)\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( u+v \right)
dydx=ddxu+ddxv\dfrac{dy}{dx}=\dfrac{d}{dx}u+\dfrac{d}{dx}v…………(2)
Now consider u=tanxcotxu=\tan {{x}^{\cot x}}
u=tanxcotx\Rightarrow u=\tan {{x}^{\cot x}}
Apply log function on both sides. So, we get
logu=logtanxcotx\Rightarrow \log u=\log \tan {{x}^{\cot x}}
Now apply derivatives on both sides.
ddxlogu=ddx(logtanxcotx)\Rightarrow \dfrac{d}{dx}\log u=\dfrac{d}{dx}\left( log\tan {{x}^{\cot x}} \right)
ddxlogu=ddx(cotx×logtanx)\Rightarrow \dfrac{d}{dx}\log u=\dfrac{d}{dx}\left( \cot x\times log\tan x \right)…………..(3)
We know thatddxlogx=1xdx\dfrac{d}{dx}\log x=\dfrac{1}{x}dx, ddx(a.b)=bddxa+addxb\dfrac{d}{dx}\left( a.b \right)=b\dfrac{d}{dx}a+a\dfrac{d}{dx}b. So, we can write equation (3) as
1ududx=cotx×ddx(logxtanx)+logxtanx×ddxcotx\Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\cot x\times \dfrac{d}{dx}\left( logx\tan x \right)+\log x\tan x\times \dfrac{d}{dx}\cot x
We know that ddxcotx=csc2x\dfrac{d}{dx}\cot x=-{{\csc }^{2}}x, ddx(tanx)=sec2x\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x. So, we get equation as
1ududx=cotx×1tanxddxtanx+logxtanx×(csc2x)\Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\cot x\times \dfrac{1}{\tan x}\dfrac{d}{dx}\tan x+\log x\tan x\times \left( -{{\csc }^{2}}x \right)
1ududx=cotx×1tanx(sec2x)+logxtanx×(csc2x)\Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\cot x\times \dfrac{1}{\tan x}\left( {{\sec }^{2}}x \right)+\log x\tan x\times \left( -{{\csc }^{2}}x \right)
From basic trigonometric reciprocal identities, we know 1tanx=cotx\dfrac{1}{\tan x}=\cot xand cotx×secx=csc\cot x\times \sec x=\csc so
1ududx=cotx×cotx(sec2x)+logxtanx×(csc2x)\Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\cot x\times \cot x\left( {{\sec }^{2}}x \right)+\log x\tan x\times \left( -{{\csc }^{2}}x \right)
1ududx=cot2x(sec2x)+logxtanx×(csc2x)\Rightarrow \dfrac{1}{u}\dfrac{du}{dx}={{\cot }^{2}}x\left( {{\sec }^{2}}x \right)+\log x\tan x\times \left( -{{\csc }^{2}}x \right)
1ududx=(cotx×secx)2+logxtanx×(csc2x)\Rightarrow \dfrac{1}{u}\dfrac{du}{dx}={{\left( \cot x\times \sec x \right)}^{2}}+\log x\tan x\times \left( -{{\csc }^{2}}x \right)
1ududx=csc2xlogxtanx×(csc2x)\Rightarrow \dfrac{1}{u}\dfrac{du}{dx}={{\csc }^{2}}x-\log x\tan x\times \left( {{\csc }^{2}}x \right)
Take csc2x{{\csc }^{2}}x common in RHS part
1ududx=csc2x(1logxtanx)\Rightarrow \dfrac{1}{u}\dfrac{du}{dx}={{\csc }^{2}}x\left( 1-\log x\tan x \right)
Now multiply with uu on both sides.
u×1ududx=u×csc2x(1logxtanx)\Rightarrow u\times \dfrac{1}{u}\dfrac{du}{dx}=u\times {{\csc }^{2}}x\left( 1-\log x\tan x \right)
After simplification we get,
dudx=u×csc2x(1logxtanx)\Rightarrow \dfrac{du}{dx}=u\times {{\csc }^{2}}x\left( 1-\log x\tan x \right)
Put u=tanxcotxu=\tan {{x}^{\cot x}} in this equation
dudx=tanxcotx×csc2x(1logxtanx)\Rightarrow \dfrac{du}{dx}=\tan {{x}^{\cot x}}\times {{\csc }^{2}}x\left( 1-\log x\tan x \right)……………….(4)
Now consider v=cotxtanxv=\cot {{x}^{\tan x}}
v=cotxtanx\Rightarrow v=\cot {{x}^{\tan x}}
Apply log\log on both sides
logv=log(cotxtanx)\Rightarrow \log v=\log \left( \cot {{x}^{\tan x}} \right)
Differentiate on both sides, we get
1vdvdx=ddx(tanxlog(cotx))\Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\dfrac{d}{dx}\left( \tan x\log (\cot x) \right)
1vdvdx=tanx1dx(logcotx)+log(cotx)ddxtanx\Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\tan x\dfrac{1}{dx}\left( \log \cot x \right)+\log \left( \cot x \right)\dfrac{d}{dx}\tan x
1vdvdx=tanx×1cotxddxcotx+log(cotx)×sec2x\Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\tan x\times \dfrac{1}{\cot x}\dfrac{d}{dx}\cot x+\log \left( \cot x \right)\times {{\sec }^{2}}x
1vdvdx=tanx×1cotx(csc2x)+log(cotx)×sec2x\Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\tan x\times \dfrac{1}{\cot x}\left( -{{\csc }^{2}}x \right)+\log \left( \cot x \right)\times {{\sec }^{2}}x
1vdvdx=tan2x(csc2x)+log(cotx)×sec2x\Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}={{\tan }^{2}}x\left( -{{\csc }^{2}}x \right)+\log \left( \cot x \right)\times {{\sec }^{2}}x
1vdvdx=sec2x+log(cotx)×sec2x\Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=-{{\sec }^{2}}x+\log \left( \cot x \right)\times {{\sec }^{2}}x
In this equation take out sec2x{{\sec }^{2}}xcommon. So, we get
1vdvdx=sec2x(1+logcotx)\Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}={{\sec }^{2}}x\left( -1+\log \cot x \right)
Now multiply with vv on both sides. So, we get
v×1vdvdx=v×sec2x(1+logcotx)\Rightarrow v\times \dfrac{1}{v}\dfrac{dv}{dx}=v\times {{\sec }^{2}}x\left( -1+\log \cot x \right)
After simplification we get,
dvdx=v×sec2x(1+logcotx)\Rightarrow \dfrac{dv}{dx}=v\times {{\sec }^{2}}x\left( -1+\log \cot x \right)
Put v=cotxtanxv=\cot {{x}^{\tan x}}in this equation. So, we get
dvdx=cotxtanx×sec2x(1+logcotx)\Rightarrow \dfrac{dv}{dx}=\cot {{x}^{\tan x}}\times {{\sec }^{2}}x\left( -1+\log \cot x \right)…………….(5)
Put equation (4) and (5) in equation (2)
dydx=ddxu+ddxv\dfrac{dy}{dx}=\dfrac{d}{dx}u+\dfrac{d}{dx}v
dydx=tanxcotx×csc2x(1logxtanx)+cotxtanx×sec2x(1+logcotx)\Rightarrow \dfrac{dy}{dx}=\tan {{x}^{\cot x}}\times {{\csc }^{2}}x\left( 1-\log x\tan x \right)+\cot {{x}^{\tan x}}\times {{\sec }^{2}}x\left( -1+\log \cot x \right)
So finally, we got dydx\dfrac{dy}{dx}
So, now we can conclude that tanxcotx×csc2x(1logxtanx)+cotxtanx×sec2x(1+logcotx)\tan {{x}^{\cot x}}\times {{\csc }^{2}}x\left( 1-\log x\tan x \right)+\cot {{x}^{\tan x}}\times {{\sec }^{2}}x\left( -1+\log \cot x \right) is the derivative of y=tanxcotx+cotxtanx\Rightarrow y=\tan {{x}^{\cot x}}+\cot {{x}^{\tan x}}.

Note: students should be careful while doing calculations. Small error in the calculation may lead to this question being wrong. Students should know basic formulas and reciprocal identities in trigonometry. Using wrong formulas may lead to getting the wrong answer.