Question
Question: Find \[\dfrac{dy}{dx}\] of \[y=\tan {{x}^{\cot x}}+\cot {{x}^{\tan x}}\]....
Find dxdy of y=tanxcotx+cotxtanx.
Solution
In this question, we will use sum rule dxd(a+b)=dxda+dxdb, product rule dxd(a.b)=bdxda+adxdb. dxd(tanx)=sec2x,dxdcotx=−csc2x, dxdlogx=x1dxthese are some basic trigonometric formulas used in this question.
Complete step by step answer:
From the question it is clear that we have to find dxdy of y=tanxcotx+cotxtanx.
⇒y=tanxcotx+cotxtanx…………(1)
Let us proceed to solve this question by taking tanxcotx=u and cotxtanx=v so that we can write y=u+v.
So, from sum rule, we can write
⇒dxdy=dxd(u+v)
dxdy=dxdu+dxdv…………(2)
Now consider u=tanxcotx
⇒u=tanxcotx
Apply log function on both sides. So, we get
⇒logu=logtanxcotx
Now apply derivatives on both sides.
⇒dxdlogu=dxd(logtanxcotx)
⇒dxdlogu=dxd(cotx×logtanx)…………..(3)
We know thatdxdlogx=x1dx, dxd(a.b)=bdxda+adxdb. So, we can write equation (3) as
⇒u1dxdu=cotx×dxd(logxtanx)+logxtanx×dxdcotx
We know that dxdcotx=−csc2x, dxd(tanx)=sec2x. So, we get equation as
⇒u1dxdu=cotx×tanx1dxdtanx+logxtanx×(−csc2x)
⇒u1dxdu=cotx×tanx1(sec2x)+logxtanx×(−csc2x)
From basic trigonometric reciprocal identities, we know tanx1=cotxand cotx×secx=csc so
⇒u1dxdu=cotx×cotx(sec2x)+logxtanx×(−csc2x)
⇒u1dxdu=cot2x(sec2x)+logxtanx×(−csc2x)
⇒u1dxdu=(cotx×secx)2+logxtanx×(−csc2x)
⇒u1dxdu=csc2x−logxtanx×(csc2x)
Take csc2x common in RHS part
⇒u1dxdu=csc2x(1−logxtanx)
Now multiply with u on both sides.
⇒u×u1dxdu=u×csc2x(1−logxtanx)
After simplification we get,
⇒dxdu=u×csc2x(1−logxtanx)
Put u=tanxcotx in this equation
⇒dxdu=tanxcotx×csc2x(1−logxtanx)……………….(4)
Now consider v=cotxtanx
⇒v=cotxtanx
Apply logon both sides
⇒logv=log(cotxtanx)
Differentiate on both sides, we get
⇒v1dxdv=dxd(tanxlog(cotx))
⇒v1dxdv=tanxdx1(logcotx)+log(cotx)dxdtanx
⇒v1dxdv=tanx×cotx1dxdcotx+log(cotx)×sec2x
⇒v1dxdv=tanx×cotx1(−csc2x)+log(cotx)×sec2x
⇒v1dxdv=tan2x(−csc2x)+log(cotx)×sec2x
⇒v1dxdv=−sec2x+log(cotx)×sec2x
In this equation take out sec2xcommon. So, we get
⇒v1dxdv=sec2x(−1+logcotx)
Now multiply with v on both sides. So, we get
⇒v×v1dxdv=v×sec2x(−1+logcotx)
After simplification we get,
⇒dxdv=v×sec2x(−1+logcotx)
Put v=cotxtanxin this equation. So, we get
⇒dxdv=cotxtanx×sec2x(−1+logcotx)…………….(5)
Put equation (4) and (5) in equation (2)
dxdy=dxdu+dxdv
⇒dxdy=tanxcotx×csc2x(1−logxtanx)+cotxtanx×sec2x(−1+logcotx)
So finally, we got dxdy
So, now we can conclude that tanxcotx×csc2x(1−logxtanx)+cotxtanx×sec2x(−1+logcotx) is the derivative of ⇒y=tanxcotx+cotxtanx.
Note: students should be careful while doing calculations. Small error in the calculation may lead to this question being wrong. Students should know basic formulas and reciprocal identities in trigonometry. Using wrong formulas may lead to getting the wrong answer.