Solveeit Logo

Question

Question: Find \( \dfrac{{dy}}{{dx}} \) , if \( y = {\sin ^{ - 1}}\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{...

Find dydx\dfrac{{dy}}{{dx}} , if y=sin1(6x414x25)y = {\sin ^{ - 1}}\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right) .

Explanation

Solution

Hint : Use the inverse trigonometric differentiation formulas to solve the given question. Also differentiate the angle of the trigonometric property given.

Complete step-by-step answer :
As we know that is sin1x=y{\sin ^{ - 1}}x = y , then it is also true that siny=x\sin y = x . So, simplify the given expression with this rule.
Now simplify the given trigonometric identity as given below:
y=sin1(6x414x25) siny=6x414x25  y = {\sin ^{ - 1}}\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right) \\\ \sin y = \dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5} \\\
The chain rule of differentiation says that is a function h(x)h\left( x \right) can be written as h(x)=f(g(x))h\left( x \right) = f\left( {g\left( x \right)} \right) , then ddx(h(x))\dfrac{d}{{dx}}\left( {h\left( x \right)} \right) will be equal to f(g(x))×ddx(g(x))f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}\left( {g\left( x \right)} \right) .
Now differentiate both the sides with respect to xx using the chain rule:
ddx(siny)=ddx(6x414x25) cosydydx=65ddx(x)45ddx(14x2) (1sin2y)dydx=6545×1214x2×ddx(14x2) (1(6x414x25)2)dydx=6545×8x214x2  \dfrac{d}{{dx}}\left( {\sin y} \right) = \dfrac{d}{{dx}}\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right) \\\ \cos y\dfrac{{dy}}{{dx}} = \dfrac{6}{5}\dfrac{d}{{dx}}\left( x \right) - \dfrac{4}{5}\dfrac{d}{{dx}}\left( {\sqrt {1 - 4{x^2}} } \right) \\\ \sqrt {\left( {1 - {{\sin }^2}y} \right)} \dfrac{{dy}}{{dx}} = \dfrac{6}{5} - \dfrac{4}{5} \times \dfrac{1}{{2\sqrt {1 - 4{x^2}} }} \times \dfrac{d}{{dx}}\left( {1 - 4{x^2}} \right) \\\ \sqrt {\left( {1 - {{\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right)}^2}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{6}{5} - \dfrac{4}{5} \times \dfrac{{ - 8x}}{{2\sqrt {1 - 4{x^2}} }} \\\
Further simplify,
(1(6x414x25)2)dydx=6545×8x214x2 (11628x248x14x225)dydx=15(6+16x14x2) (28x2+48x14x2+925)dydx=15(614x2+16x14x2) dydx=(614x2+16x)14x2(28x2+48x14x2+9)  \sqrt {\left( {1 - {{\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right)}^2}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{6}{5} - \dfrac{4}{5} \times \dfrac{{ - 8x}}{{2\sqrt {1 - 4{x^2}} }} \\\ \sqrt {\left( {1 - \dfrac{{16 - 28{x^2} - 48x\sqrt {1 - 4{x^2}} }}{{25}}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{1}{5}\left( {6 + \dfrac{{16x}}{{\sqrt {1 - 4{x^2}} }}} \right) \\\ \sqrt {\left( {\dfrac{{28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9}}{{25}}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{1}{5}\left( {\dfrac{{6\sqrt {1 - 4{x^2}} + 16x}}{{\sqrt {1 - 4{x^2}} }}} \right) \\\ \dfrac{{dy}}{{dx}} = \dfrac{{\left( {6\sqrt {1 - 4{x^2}} + 16x} \right)}}{{\sqrt {1 - 4{x^2}} \left( {\sqrt {28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9} } \right)}} \\\
Hence the value of dydx\dfrac{{dy}}{{dx}} is equal to (614x2+16x)14x2(28x2+48x14x2+9)\dfrac{{\left( {6\sqrt {1 - 4{x^2}} + 16x} \right)}}{{\sqrt {1 - 4{x^2}} \left( {\sqrt {28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9} } \right)}} for the given question.
So, the correct answer is “(614x2+16x)14x2(28x2+48x14x2+9)\dfrac{{\left( {6\sqrt {1 - 4{x^2}} + 16x} \right)}}{{\sqrt {1 - 4{x^2}} \left( {\sqrt {28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9} } \right)}} ”.

Note : Use the chain rule to differentiate the term siny\sin y with respect to the variable xx as the variable yy is also a function of xx itself. The trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 holds true. The chain rule of differentiation says that is a function h(x)h\left( x \right) can be written as h(x)=f(g(x))h\left( x \right) = f\left( {g\left( x \right)} \right) , then ddx(h(x))\dfrac{d}{{dx}}\left( {h\left( x \right)} \right) will be equal to f(g(x))×ddx(g(x))f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}\left( {g\left( x \right)} \right) .