Solveeit Logo

Question

Question: Find \(\dfrac{dy}{dx}\) , if \(y=12\left( 1-\cos t \right),x=10\left( t-\sin t \right),-\dfrac{\pi }...

Find dydx\dfrac{dy}{dx} , if y=12(1cost),x=10(tsint),π2<t<π2y=12\left( 1-\cos t \right),x=10\left( t-\sin t \right),-\dfrac{\pi }{2} < t < \dfrac{\pi }{2} .

Explanation

Solution

In order to solve this problem, we need to know the chain rule. The chain rule is given by dydx=dydt×dtdx\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx} . Also, in order to simplify the equation, we need to know some formulas. They are given by sin2x=2sinx.cosx\sin 2x=2\sin x.\cos x, 1cos2x=2sin2x1-\cos 2x=2{{\sin }^{2}}x and cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} .

Complete step by step answer:
As we can see that the yy is the function of tt . and xx is also the function of tt .
Hence, we cannot find the value dydx\dfrac{dy}{dx} directly by differentiating yy .
To solve this, we need to use the chain rule.
The chain rule says that
dydx=dydt×dtdx...........(i)\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}...........(i)
Therefore, we now need to find the values of dydt\dfrac{dy}{dt} and dtdx\dfrac{dt}{dx} separately.
Differentiating y=12(1cost)y=12\left( 1-\cos t \right) we get,
dydt=ddt(12(1cost))\dfrac{dy}{dt}=\dfrac{d}{dt}\left( 12\left( 1-\cos t \right) \right)
Solving this further we get,

& \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 12-12\cos t \right) \\\ & =\left( 0-12\left( -\sin t \right) \right) \\\ & =12\sin t..........................(ii) \end{aligned}$$ Similarly differentiating $x=10\left( t-\sin t \right)$ , we get, $\begin{aligned} & \dfrac{dx}{dt}=\dfrac{d}{dt}\left( 10\left( t-\sin t \right) \right) \\\ & \\\ \end{aligned}$ Solving this further we get, $\begin{aligned} & \dfrac{dx}{dt}=\dfrac{d}{dt}\left( 10\left( t-\sin t \right) \right) \\\ & =\dfrac{d}{dt}\left( 10t-10\sin t \right) \\\ & =10-10\cos t.....................(iii) \end{aligned}$ We need to find the value of $\dfrac{dt}{dx}$ , taking the inverse of equation (iii) we get, $\dfrac{dt}{dx}=\dfrac{1}{10-10\cos t}............(iv)$ Substituting the values of equation (ii) and (iv) in equation (i) we get, $\dfrac{dy}{dx}=12\sin t\times \dfrac{1}{10-10\cos t}$ Solving this we get, $\begin{aligned} & \dfrac{dy}{dx}=\dfrac{12\sin t}{10\left( 1-\cos t \right)} \\\ & =\dfrac{6\sin t}{5\left( 1-\cos t \right)} \end{aligned}$ We can use the formulas $\sin 2x=2\sin x.\cos x$ and $1-\cos 2x=2{{\sin }^{2}}x$ . Using the formula, we get, $\dfrac{dy}{dx}=\dfrac{6\left( 2\sin \dfrac{t}{2}.\cos \dfrac{t}{2} \right)}{5\left( 2{{\sin }^{2}}\dfrac{t}{2} \right)}$ Solving this further we get, $\begin{aligned} & \dfrac{dy}{dx}=\dfrac{6\left( \cos \dfrac{t}{2} \right)}{5\left( \sin \dfrac{t}{2} \right)} \\\ & =\dfrac{6}{5}\cot \dfrac{t}{2} \end{aligned}$ **Hence, the value of $\dfrac{dy}{dx}=\dfrac{6}{5}\cot \dfrac{t}{2}$.** **Note:** We can also solve this dividing equation (ii) by (iii). The answer will remain the same. We can also solve this by another approach. We can solve this by finding the value of $t$ in terms of $x$ and substituting in the equation of $y$ . Our aim will be to eliminate the value of $t$ . But we need to be careful as this method can turn out to be extremely complicated.