Solveeit Logo

Question

Question: Find \(\dfrac{dy}{dx}\) , if \(x=2\cos \theta -\cos 2\theta \) and \(y=2\sin \theta -\sin 2\theta \)...

Find dydx\dfrac{dy}{dx} , if x=2cosθcos2θx=2\cos \theta -\cos 2\theta and y=2sinθsin2θy=2\sin \theta -\sin 2\theta .
(a) tan3θ2\tan \dfrac{3\theta }{2}
(b) tan3θ2-\tan \dfrac{3\theta }{2}
(c) cot3θ2\cot \dfrac{3\theta }{2}
(d) cot3θ2-\cot \dfrac{3\theta }{2}

Explanation

Solution

First, we will find derivation of x with respect to θ\theta . Also, y with respect to θ\theta . By doing this, we will get dxdθ,dydθ\dfrac{dx}{d\theta },\dfrac{dy}{d\theta } . Then we will divide dydθ\dfrac{dy}{d\theta } by dxdθ\dfrac{dx}{d\theta } and on solving we will get the required answer. Also, formula needed to solve the equation as cosacosb=2sin(a+b2)sin(ab2)\cos a-\cos b=2\sin \left( \dfrac{a+b}{2} \right)\sin \left( \dfrac{a-b}{2} \right) , sinasinb=2cos(a+b2)sin(ab2)\sin a-\sin b=2\cos \left( \dfrac{a+b}{2} \right)\sin \left( \dfrac{a-b}{2} \right) , and sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta .

Complete step-by-step answer :
Here, we are given two functions i.e. x=2cosθcos2θx=2\cos \theta -\cos 2\theta and y=2sinθsin2θy=2\sin \theta -\sin 2\theta . So, first we will find derivative of x function. If suppose we have function let’s say x=sin3θx=\sin 3\theta , then here there are two variables i.e. x and θ\theta so, we will find dxdθ\dfrac{dx}{d\theta } . So, we will first use derivative of sine function which is cos function and then derivative of 3θ3\theta which is equal to 3. Thus, using the same concept we will find first dxdθ,dydθ\dfrac{dx}{d\theta },\dfrac{dy}{d\theta } .
We will find dxdθ\dfrac{dx}{d\theta } . We will get as
dxdθ=2ddθ(cosθ)ddθ(cos2θ)\dfrac{dx}{d\theta }=2\dfrac{d}{d\theta }\left( \cos \theta \right)-\dfrac{d}{d\theta }\left( \cos 2\theta \right)
Now, we know that derivative of cos function is sin-\sin function. So, we will use the chain rule, given by derivative of function f(g(x))=f’(x).g’(x) and we get as
dxdθ=2sinθ(sin2θ)ddθ(2θ)\dfrac{dx}{d\theta }=-2\sin \theta -\left( -\sin 2\theta \right)\cdot \dfrac{d}{d\theta }\left( 2\theta \right)
On further solving, we get as
dxdθ=2sinθ+2sin2θ\dfrac{dx}{d\theta }=-2\sin \theta +2\sin 2\theta …………………………….(1)
Similarly, we will find dydθ\dfrac{dy}{d\theta } .
dydθ=2ddθ(sinθ)ddθ(sin2θ)\dfrac{dy}{d\theta }=2\dfrac{d}{d\theta }\left( \sin \theta \right)-\dfrac{d}{d\theta }\left( \sin 2\theta \right)
Now, we know that derivative of sin function is cos function. So, we can write it as
dydθ=2cosθcos2θddθ(2θ)\dfrac{dy}{d\theta }=2\cos \theta -\cos 2\theta \cdot \dfrac{d}{d\theta }\left( 2\theta \right)
On further solving, we get as
dydθ=2cos2cos2θ\dfrac{dy}{d\theta }=2\cos -2\cos 2\theta …………………..(2)
Now, we have to find dydx\dfrac{dy}{dx} . So, dividing equation (2) by (1) we get as
dydθdxdθ=2cosθ2cos2θ2sinθ+2sin2θ\dfrac{\dfrac{dy}{d\theta }}{\dfrac{dx}{d\theta }}=\dfrac{2\cos \theta -2\cos 2\theta }{-2\sin \theta +2\sin 2\theta }
Now, we will take 2 common and cancelling it and on rearranging the terms, we get as
dydx=cosθcos2θsin2θsinθ\dfrac{dy}{dx}=\dfrac{\cos \theta -\cos 2\theta }{\sin 2\theta -\sin \theta }
We can see that in the numerator there is a cos minus cos term. So, to solve this there formula as 2sinasinb=cos(ab)cos(a+b)2\sin a\sin b=\cos \left( a-b \right)-\cos \left( a+b \right) where a is 2θ2\theta and b is θ\theta . This formula can also be written as cosacosb=2sin(a+b2)sin(ab2)\cos a-\cos b=2\sin \left( \dfrac{a+b}{2} \right)\sin \left( \dfrac{a-b}{2} \right) . Similarly, in denominator we will use sinasinb=2cos(a+b2)sin(ab2)\sin a-\sin b=2\cos \left( \dfrac{a+b}{2} \right)\sin \left( \dfrac{a-b}{2} \right) .
On putting the values, we get equation as
dydx=2sin(2θ+θ2)sin(2θθ2)2cos(2θ+θ2)sin(2θθ2)\dfrac{dy}{dx}=\dfrac{2\sin \left( \dfrac{2\theta +\theta }{2} \right)\sin \left( \dfrac{2\theta -\theta }{2} \right)}{2\cos \left( \dfrac{2\theta +\theta }{2} \right)\sin \left( \dfrac{2\theta -\theta }{2} \right)}
On solving, we can see that sin(2θθ2)\sin \left( \dfrac{2\theta -\theta }{2} \right) is common in numerator and denominator. So, on cancelling we will get as
dydx=2sin(2θ+θ2)2cos(2θ+θ2)\dfrac{dy}{dx}=\dfrac{2\sin \left( \dfrac{2\theta +\theta }{2} \right)}{2\cos \left( \dfrac{2\theta +\theta }{2} \right)}
dydx=2sin(3θ2)2cos(3θ2)\dfrac{dy}{dx}=\dfrac{2\sin \left( \dfrac{3\theta }{2} \right)}{2\cos \left( \dfrac{3\theta }{2} \right)}
We know that sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta and on cancelling constant number 2, we will get
dydx=tan(3θ2)\dfrac{dy}{dx}=\tan \left( \dfrac{3\theta }{2} \right)
Hence, option (a) is the correct answer.

Note :Remember that while using the formula cosacosb=2sin(a+b2)sin(ab2)\cos a-\cos b=2\sin \left( \dfrac{a+b}{2} \right)\sin \left( \dfrac{a-b}{2} \right) we can take a as θ\theta and b as 2θ2\theta instead of taking vice versa. By this we will get equation as dydx=2sin(θ+2θ2)sin(θ2θ2)2cos(θ+2θ2)sin(θ2θ2)\dfrac{dy}{dx}=\dfrac{2\sin \left( \dfrac{\theta +2\theta }{2} \right)\sin \left( \dfrac{\theta -2\theta }{2} \right)}{2\cos \left( \dfrac{\theta +2\theta }{2} \right)\sin \left( \dfrac{\theta -2\theta }{2} \right)} . On solving this, we know that (sin(θ))=sinθ,cos(θ)=cosθ\left( \sin \left( -\theta \right) \right)=-\sin \theta ,\cos \left( -\theta \right)=\cos \theta . So, at last on substituting proper signs and solving we will get the same answer.