Solveeit Logo

Question

Question: Find \( \dfrac{d}{{dx}}[{e^{( - a{x^2})}}\log \sin x = \) \[\left( 1 \right)\]\({e^{( - a{x^2})}}...

Find ddx[e(ax2)logsinx=\dfrac{d}{{dx}}[{e^{( - a{x^2})}}\log \sin x =
\left( 1 \right)$$${e^{( - a{x^2})}}[\cot x + 2ax \times \log \sin x]$ \left( 2 \right){e^{( - a{x^2})}}[\cot x + ax \times \log \sin x]$ $$\left( 3 \right){e^{( - a{x^2})}}[\cot x - 2ax \times \log \sin x]$
\left( 4 \right)$$$$none{\text{ }}of{\text{ }}these

Explanation

Solution

Hint : We have to find the derivative of [e(ax2)logsinx][{e^{( - a{x^2})}}\log \sin x] with respect to. We solve this using chain rule and product rule of differentiation . Also using various basic derivative formulas of trigonometric functions , derivatives of exponential functions and derivatives of logarithmic functions . We firstly derivate the function with respect to x by applying the product rule and then the chain rule.

Complete step-by-step answer :
Derivative of sum of two function is equal to sum of the derivatives of the functions :
 d[f(x) + g(x) ]dx={\text{ }}\dfrac{{d\left[ {f\left( x \right){\text{ }} + {\text{ }}g\left( x \right){\text{ }}} \right]}}{{dx}} = d f(x)dx +d g(x)dx\dfrac{{d{\text{ }}f\left( x \right)}}{{dx}}{\text{ }} + \dfrac{{d{\text{ }}g\left( x \right)}}{{dx}}
Derivative of product of two function is difference of the derivatives of the functions :
d[f(x)  g(x)]dx =\dfrac{{d\left[ {f\left( x \right){\text{ }} - {\text{ }}g\left( x \right)} \right]}}{{dx}}{\text{ }} = d[f(x)]dx  d[g(x)]dx\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}{\text{ }} - {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}
Derivative of product of two function is given by the following product rule :
d[f(x) × g(x)]dx\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}} = d[f(x)]dx × g + f × d[g(x)]dx = {\text{ }}\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}{\text{ }} \times {\text{ }}g{\text{ }} + {\text{ }}f{\text{ }} \times {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}
Derivative of quotient of two function is given by the following quotient rule :
d[f(x)g(x)]dx =\dfrac{{d\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right]}}{{dx}}{\text{ }} = [d[f(x)]dx×g(x)f(x)×d[g(x)]dx][g(x)]2\dfrac{{[\dfrac{{d[f(x)]}}{{dx}} \times g(x) - f(x) \times \dfrac{{d[g(x)]}}{{dx}}]}}{{{{[g(x)]}^2}}}

Given : ddx[e(ax2)logsinx]\dfrac{d}{{dx}}[{e^{( - a{x^2})}}logsinx]
Let us consider y=[e(ax2)logsinx]y = [{e^{( - a{x^2})}}logsinx]
Now we have to derivative yywith respect to
Using the formula of product rule
d[f(x) × g(x)]dx =\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}}{\text{ }} =  d[f(x)]dx × g + f × d[g(x)]dx{\text{ }}\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx{\text{ }}}} \times {\text{ }}g{\text{ }} + {\text{ }}f{\text{ }} \times {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}
Differentiate yywith respect to, we get
dydx=ddx[e(ax2)]×logsinx+ddx[logsinx]×[e(ax2)]\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}[{e^{( - a{x^2})}}] \times \log \sin x + \dfrac{d}{{dx}}[\log \sin x] \times [{e^{( - a{x^2})}}]
Using chain rule and derivatives of functions
We know ,
( Derivative of ex=ex{e^x} = {e^x})
( derivative of xn=n×x(n1){x^n} = n \times {x^{(n - 1)}})
( derivative of log x = 1xlog{\text{ }}x{\text{ }} = {\text{ }}\dfrac{1}{x})
( Derivative ofsin x = cos xsin{\text{ }}x{\text{ }} = {\text{ }}cos{\text{ }}x)
Using these derivatives , we get
 dydx={\text{ }}\dfrac{{dy}}{{dx}} = [e(ax2)×(2ax)]×logsinx+[cosxsinx]×[e(ax2)][{e^{( - a{x^2})}} \times ( - 2ax)] \times \log \sin x + [\dfrac{{\cos x}}{{\sin x}}] \times [{e^{( - a{x^2})}}]
Also , we know cot x = cos xsin xcot{\text{ }}x{\text{ }} = {\text{ }}\dfrac{{cos{\text{ }}x}}{{sin{\text{ }}x}}
So,
dydx =\dfrac{{dy}}{{dx}}{\text{ }} = [e(ax2)(2ax)]×logsinx+[cotx][e(ax2)][{e^{( - a{x^2})}}( - 2ax)] \times \log \sin x + [\cot x][{e^{( - a{x^2})}}]
Taking e(ax2){e^{( - a{x^2})}}common , we get
dydx =\dfrac{{dy}}{{dx}}{\text{ }} = [e(ax2)]×[cotx2ax×logsinx][{e^{( - a{x^2})}}] \times [\cot x - 2ax \times \log \sin x]
Thus , the correct option is (3)\left( 3 \right)
So, the correct answer is “Option 3”.

Note: We differentiated yy with respect to to finddydx\dfrac{{dy}}{{dx}}. We know the differentiation of trigonometric function :
d[cos x]dx= sin x\dfrac{{d\left[ {cos{\text{ }}x} \right]}}{{dx}} = {\text{ }} - sin{\text{ }}x
d[sin x]dx = cos x\dfrac{{d\left[ {sin{\text{ }}x} \right]}}{{dx}}{\text{ }} = {\text{ }}cos{\text{ }}x
d[xn]=nx(n1)d[{x^n}] = n{x^{(n - 1)}}
d[tanx]=sec2xd[\tan x] = se{c^2}x
We use the derivative according to the given problem .