Solveeit Logo

Question

Question: Find \[\dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}}\] \[{\t...

Find cos45sec30+cosec30\dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}}
A.263+1{\text{A}}{\text{.}}\dfrac{{2\sqrt 6 }}{{\sqrt 3 + 1}}
B.223+2{\text{B}}{\text{.}}\dfrac{{\sqrt 2 }}{{2\sqrt 3 + 2}}
C.233+1{\text{C}}{\text{.}}\dfrac{{2\sqrt 3 }}{{\sqrt 3 + 1}}
D.32(2+6){\text{D}}{\text{.}}\dfrac{{\sqrt 3 }}{{2\left( {\sqrt 2 + \sqrt 6 } \right)}}

Explanation

Solution

Write the value of the trigonometric functions. The trigonometric function is the function that relates the ratio of the length of two sides with the angles of the right-angled triangle widely used in navigation, oceanography, the theory of periodic functions, and projectiles.

Commonly used trigonometric functions are the sine, the cosine, and the tangent, whereas the cosecant, the secant, the cotangent are their reciprocal, respectively. The value of these functions can be determined by the relation of the sides of a right-angled triangle where sine function is the ratio of perpendicular (P) and hypotenuses (H) of the trianglesinθ = perpendicularhypotenuses\sin \theta {\text{ = }}\dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuses}}}}. Cosine is the ratio of the base (B) and hypotenuses (H) of the trianglecosθ = basehypotenuses\cos \theta {\text{ = }}\dfrac{{{\text{base}}}}{{{\text{hypotenuses}}}}; the tangent is the ratio of the perpendicular (P) and base (B) of the triangle tanθ = perpendicularbase\tan \theta {\text{ = }}\dfrac{{{\text{perpendicular}}}}{{{\text{base}}}} , whereas cosecθ{\text{cosec}}\theta , secθ\sec \theta and cotθ\cot \theta are their inverse respectively. The given value determines the value of these functions.

Complete step by step answer:

Functionsinθ\sin \theta cosθ\cos \theta tanθ\tan \theta
0010
300{30^0}12\dfrac{1}{2}32\dfrac{{\sqrt 3 }}{2}13\dfrac{1}{{\sqrt 3 }}
450{45^0}12\dfrac{1}{{\sqrt 2 }}12\dfrac{1}{{\sqrt 2 }}1
600{60^0}32\dfrac{{\sqrt 3 }}{2}12\dfrac{1}{2}3\sqrt 3
900{90^0}10Indeterminate

Write the trigonometric value of the trigonometric function by a given angle, θ\theta value
cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}
sec30=1cos30=132=23\sec {30^ \circ } = \dfrac{1}{{\cos {{30}^ \circ }}} = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{2}{{\sqrt 3 }}
cosec30=1sin30=112=2{\text{cosec}}{30^ \circ } = \dfrac{1}{{\sin {{30}^ \circ }}} = \dfrac{1}{{\dfrac{1}{2}}} = 2
Now, put these values in the given equation:

cos45sec30+cosec30=12(23+2) =12(2+233)  \dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\left( {\dfrac{2}{{\sqrt 3 }} + 2} \right)}} \\\ = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\left( {\dfrac{{2 + 2\sqrt 3 }}{{\sqrt 3 }}} \right)}} \\\

As abcd\dfrac{{\dfrac{a}{b}}}{{\dfrac{c}{d}}} can be written as ab×dc\dfrac{a}{b} \times \dfrac{d}{c}so

cos45sec30+cosec30=12×3(2+23) =3(22+223) =3(22+26) =32(2+6)  \dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}} = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{{\left( {2 + 2\sqrt 3 } \right)}} \\\ = \dfrac{{\sqrt 3 }}{{\left( {2\sqrt 2 + 2\sqrt 2 \sqrt 3 } \right)}} \\\ = \dfrac{{\sqrt 3 }}{{\left( {2\sqrt 2 + 2\sqrt 6 } \right)}} \\\ = \dfrac{{\sqrt 3 }}{{2\left( {\sqrt 2 + \sqrt 6 } \right)}} \\\

Note: Write the value of the function in the relation for the given respective angles in cases ofcosecθ{\text{cosec}}\theta secθ\sec \theta , cotθ\cot \theta either inverse them or write their values, respectively. Alternatively, the given trigonometric function can be reduced to a smaller expression by carrying out general algebraic and trigonometric identities and at last put the values of the trigonometric functions for the respective values of θ\theta .