Solveeit Logo

Question

Question: Find derivatives of sin inverse x using chain rule...

Find derivatives of sin inverse x using chain rule

Answer

11x2\frac{1}{\sqrt{1-x^2}}

Explanation

Solution

To find the derivative of sin1x\sin^{-1}x using the chain rule, we follow these steps:

  1. Let y=sin1xy = \sin^{-1}x. This implies x=sinyx = \sin y.

  2. Differentiate both sides of the equation x=sinyx = \sin y with respect to xx.

    • On the left side, ddx(x)=1\frac{d}{dx}(x) = 1.
    • On the right side, we differentiate siny\sin y with respect to xx. Since yy is a function of xx, we apply the chain rule: ddx(siny)=ddy(siny)dydx=cosydydx\frac{d}{dx}(\sin y) = \frac{d}{dy}(\sin y) \cdot \frac{dy}{dx} = \cos y \cdot \frac{dy}{dx}.
  3. Equating the derivatives from both sides: 1=cosydydx1 = \cos y \cdot \frac{dy}{dx}

  4. Solve for dydx\frac{dy}{dx}: dydx=1cosy\frac{dy}{dx} = \frac{1}{\cos y}

  5. Now, we need to express cosy\cos y in terms of xx. We know that siny=x\sin y = x. Using the trigonometric identity sin2y+cos2y=1\sin^2 y + \cos^2 y = 1: cos2y=1sin2y\cos^2 y = 1 - \sin^2 y

    Substitute siny=x\sin y = x: cos2y=1x2\cos^2 y = 1 - x^2 cosy=±1x2\cos y = \pm \sqrt{1 - x^2}

    For the principal value branch of sin1x\sin^{-1}x, the range of yy is [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}]. In this interval, cosy\cos y is non-negative. Therefore, we take the positive square root: cosy=1x2\cos y = \sqrt{1 - x^2}

  6. Substitute this expression for cosy\cos y back into the derivative: dydx=11x2\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}

This derivative is valid for x(1,1)x \in (-1, 1).