Solveeit Logo

Question

Question: Find derivative of \(y = {x^x}.{e^{2x + 5}}\)....

Find derivative of y=xx.e2x+5y = {x^x}.{e^{2x + 5}}.

Explanation

Solution

Differentiation- It is the action of computing a derivative.
The derivative of a function y=f(x)y = f\left( x \right) of a variable x is a measure of the rate at which the value y of the function changes with respect to the change of the variable x.
It is denoted by dy/dx.dy/dx.
Some formulae of finding differentiation
ddx(ax)=a\dfrac{d}{{dx}}(ax) = a
ddx(x)=1\dfrac{d}{{dx}}(x) = 1
ddx(c)=0\dfrac{d}{{dx}}(c) = 0 [c=constant]\left[ {c = constant} \right]
ddx(xn)=xn1\dfrac{d}{{dx}}({x^n}) = {x^{n - 1}}
ddx(en)=ex\dfrac{d}{{dx}}({e^n}) = {e^x}
ddx(ax±b)=ddx(ax)±ddx(b)\dfrac{d}{{dx}}(ax \pm b) = \dfrac{d}{{dx}}(ax) \pm \dfrac{d}{{dx}}(b)
ddx(logx)=1x\dfrac{d}{{dx}}(\log x) = \dfrac{1}{x}
ddx(sinx)=cosx\dfrac{d}{{dx}}(\sin x) = \cos x
ddx(cosx)=sinx\dfrac{d}{{dx}}(cosx) = - \sin x
ddx(tanx)=secx2\dfrac{d}{{dx}}(\tan x) = \sec {x^2}
ddx(secx)=secxtanx\dfrac{d}{{dx}}(\sec x) = \sec x\tan x
ddx(cotx)=cosec2x\dfrac{d}{{dx}}(\cot x) = - \cos e{c^2}x
ddx(cosecx)=cosecxcotx\dfrac{d}{{dx}}(\cos ecx) = \cos ecx\cot x

Complete step by step solution:
y=xxe2x+5y = {x^x}{e^{2x + 5}}
Taking log both the sides
logy=log(xxe2x+5)\log y = \log ({x^x}{e^{2x + 5}})
or
logy=logxx+loge2x+5\log y = \log {x^x} + \log {e^{2x + 5}}
Differentiating both the sides
ddx(logy)=ddx(logxx)+ddx[loge2x+5]\dfrac{d}{{dx}}(\log y) = \dfrac{d}{{dx}}(\log {x^x}) + \dfrac{d}{{dx}}[\log {e^{2x + 5}}]
1ydydx=ddx(xlogx)+ddx[(2x+5)logee]\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x\log x) + \dfrac{d}{{dx}}[(2x + 5){\log _e}e]
1ydydx=ddx(x)×logx+xddx(logx)+ddx(2x+5)\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x) \times \log x + x\dfrac{d}{{dx}}(\log x) + \dfrac{d}{{dx}}(2x + 5)
1ydydx=ddx(x)×logx+xddx(logx)+ddx(2x+5)\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x) \times \log x + x\dfrac{d}{{dx}}(\log x) + \dfrac{d}{{dx}}(2x + 5)
1ydydx=(1)logx+x×(1x)+2\dfrac{1}{y}\dfrac{{dy}}{{dx}} = (1)\log x + x \times \left( {\dfrac{1}{x}} \right) + 2
1ydydx=logx+1+2\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x + 1 + 2
dydx=(logx+3)×y\dfrac{{dy}}{{dx}} = (\log x + 3) \times y
or dydx=[logx+3][xxe2x+5]\dfrac{{dy}}{{dx}} = [\log x + 3][{x^x}{e^{2x + 5}}]
So derivative of y=exe2x+5y = {e^x}{e^{2x + 5}} is [logx+3](xxe2x+5)[\log x + 3]({x^x}{e^{2x + 5}}).

Note: 1.Students usually forget to use u.v formula i.e. differentiation by parts for finding derivation of two functions which are in multiplication with each other.
U.v formula d(uv)dx=v.d(u)dx+u.d(v)dx\dfrac{{d(uv)}}{{dx}} = \dfrac{{v.d\left( u \right)}}{{dx}} + \dfrac{{u.d\left( v \right)}}{{dx}}
(differentiation by parts)
One function will remain constant and the 2nd function to be differentiated.
Then the 2nd function will remain constant and the 1st one is to be differentiated.