Solveeit Logo

Question

Question: Find \( {{D}_{x}} \) and D for the equation \( 2x+3y=4 \) ; \( 7x-5y=2 \) ....

Find Dx{{D}_{x}} and D for the equation 2x+3y=42x+3y=4 ; 7x5y=27x-5y=2 .

Explanation

Solution

Hint : We know that Cramer’s rule Cramer’s rule for expressions a1x+b1y=c1{{a}_{1}}x+{{b}_{1}}y={{c}_{1}} and a2x+b2y=c2{{a}_{2}}x+{{b}_{2}}y={{c}_{2}} , can be given as, D=[a1b1 a2b2 ]=(a1b2a2b1)D=\left[ \begin{matrix} {{a}_{1}} & {{b}_{1}} \\\ {{a}_{2}} & {{b}_{2}} \\\ \end{matrix} \right]=\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right) and Dx=[c1b1 c2b2 ]=(c1b2c2b1){{D}_{x}}=\left[ \begin{matrix} {{c}_{1}} & {{b}_{1}} \\\ {{c}_{2}} & {{b}_{2}} \\\ \end{matrix} \right]=\left( {{c}_{1}}{{b}_{2}}-{{c}_{2}}{{b}_{1}} \right) . So, we ill compare our expressions with the general expressions and then by substituting the values in expression we will find the value of Dx and D for the equation 2x+3y=42x+3y=4 ; 7x5y=27x-5y=2 .

Complete step-by-step answer :
In question equations 2x+3y=42x+3y=4 and 7x5y=27x-5y=2 are given and we are asked to find Dx and D, where D is determinant of two equations and Dx is determinant of equations with respect to x. Now, to find the value of determinant Cramer’s rule for expressions a1x+b1y=c1{{a}_{1}}x+{{b}_{1}}y={{c}_{1}} and a2x+b2y=c2{{a}_{2}}x+{{b}_{2}}y={{c}_{2}} , can be given as,
D=[a1b1 a2b2 ]=(a1b2a2b1)D=\left[ \begin{matrix} {{a}_{1}} & {{b}_{1}} \\\ {{a}_{2}} & {{b}_{2}} \\\ \end{matrix} \right]=\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right) ………….(i)
Now, comparing expressions 2x+3y=42x+3y=4 and 7x5y=27x-5y=2 , with a1x+b1y=c1{{a}_{1}}x+{{b}_{1}}y={{c}_{1}} and a2x+b2y=c2{{a}_{2}}x+{{b}_{2}}y={{c}_{2}} , we will get,
a1=2{{a}_{1}}=2 , b1=3{{b}_{1}}=3 , a2=7{{a}_{2}}=7 , b2=5{{b}_{2}}=-5 , c1=4{{c}_{1}}=4 and c2=2{{c}_{2}}=2
On substituting these values in expression (i), we will get,
D=[23 75 ]=(2(5)3(7))D=\left[ \begin{matrix} 2 & 3 \\\ 7 & -5 \\\ \end{matrix} \right]=\left( 2\left( -5 \right)-3\left( 7 \right) \right)
D=(2(5)3(7))=1021=31\Rightarrow D=\left( 2\left( -5 \right)-3\left( 7 \right) \right)=-10-21=-31
Now, using Cramer’s rule Dx can be given as,
Dx=[c1b1 c2b2 ]=(c1b2c2b1){{D}_{x}}=\left[ \begin{matrix} {{c}_{1}} & {{b}_{1}} \\\ {{c}_{2}} & {{b}_{2}} \\\ \end{matrix} \right]=\left( {{c}_{1}}{{b}_{2}}-{{c}_{2}}{{b}_{1}} \right)
As we are considering for x, we will replace the value of x with values of constants. Now, on substituting the values in expression we will get,
Dx=[43 25 ]=(4(5)2(3)){{D}_{x}}=\left[ \begin{matrix} 4 & 3 \\\ 2 & -5 \\\ \end{matrix} \right]=\left( 4\left( -5 \right)-2\left( 3 \right) \right)
Dx=(4(5)2(3))=206=26\Rightarrow {{D}_{x}}=\left( 4\left( -5 \right)-2\left( 3 \right) \right)=-20-6=-26
Thus, values of Dx and D are 26-26 and 31-31 respectively.

Note : Here, we were asked to find the value of Dx so, we replaced the value of constants of x with the constant terms in expression. If, we were asked to find the value of Dy{{D}_{y}} , then we have to replace the value of constant of y with constant such as, Dy=[a1c1 a2c2 ]=(a1c2a2c1){{D}_{y}}=\left[ \begin{matrix} {{a}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{c}_{2}} \\\ \end{matrix} \right]=\left( {{a}_{1}}{{c}_{2}}-{{a}_{2}}{{c}_{1}} \right) . If students used this to find Dx{{D}_{x}} , then the answer will be wrong. So, be careful while solving this type of problem.