Question
Question: Find cosine of the angle between the direction and of the vectors \[\vec a + 4\hat i + 3\hat j + \ha...
Find cosine of the angle between the direction and of the vectors a+4i^+3j^+k^,b=2i^−j^+2k^.
Also, find a unit vector perpendicular to both aandb. What is the sine of the angle between aandb.
A. sinθ−(26×9185)−31(26185)
B. sinθ=−(26×9185)=31(26185)
C. sinθ−(26×8185)
D. None of these
Solution
To find cosine angle between two vectors, for sine angle between aandb, we use cross product of vectors. Also for unit vector, we divide vector by its magnitude as given below:
cos\theta = \dfrac{{\vec a\,.\vec b}}{{|\vec a\,|\,|\vec b|}},\,\,\,\sin \theta = \dfrac{{\vec a\, \times \vec b}}{{|\vec a\,|\,\,|\vec b|}}$$$$\vec a\,.\vec b = ({a_x}\hat i + {a_y}\hat j + {a_z}\hat k).({b_x}\hat i + {b_y}\hat j + {b_z}\hat k) = {a_x}{b_x} + {a_y}\,{b_y} + {a_z}{b_z}
= \sqrt 9 \\
= 3 \\
|\vec a \times \vec b|, = 7\hat i - 6\hat j - 10k \\
|\vec a \times \vec b|, = \sqrt {{{(7)}^2} + {{( - 6)}^2} + {{( - 10)}^2}} \\