Solveeit Logo

Question

Question: Find cosine of the angle between the direction and of the vectors \[\vec a + 4\hat i + 3\hat j + \ha...

Find cosine of the angle between the direction and of the vectors a+4i^+3j^+k^,b=2i^j^+2k^\vec a + 4\hat i + 3\hat j + \hat k,\,\,\,\vec b = 2\hat i - \hat j + 2\hat k.
Also, find a unit vector perpendicular to both aandb\vec a\,\,and\,\,\vec b. What is the sine of the angle between aandb\vec a\,\,and\,\,\vec b.
A. sinθ(18526×9)13(18526)\sin \theta - \sqrt {\left( {\dfrac{{185}}{{26 \times 9}}} \right)} - \dfrac{1}{3}\sqrt {\left( {\dfrac{{185}}{{26}}} \right)}
B. sinθ=(18526×9)=13(18526)\sin \theta = - \sqrt {\left( {\dfrac{{185}}{{26 \times 9}}} \right)} = \dfrac{1}{3}\sqrt {\left( {\dfrac{{185}}{{26}}} \right)}
C. sinθ(18526×8)\sin \theta - \sqrt {\left( {\dfrac{{185}}{{26 \times 8}}} \right)}
D. None of these

Explanation

Solution

To find cosine angle between two vectors, for sine angle between aandb\vec a\,\,and\,\,\vec b, we use cross product of vectors. Also for unit vector, we divide vector by its magnitude as given below:
cos\theta = \dfrac{{\vec a\,.\vec b}}{{|\vec a\,|\,|\vec b|}},\,\,\,\sin \theta = \dfrac{{\vec a\, \times \vec b}}{{|\vec a\,|\,\,|\vec b|}}$$$$\vec a\,.\vec b = ({a_x}\hat i + {a_y}\hat j + {a_z}\hat k).({b_x}\hat i + {b_y}\hat j + {b_z}\hat k) = {a_x}{b_x} + {a_y}\,{b_y} + {a_z}{b_z}

{\hat i}&{\hat j}&{\hat k} \\\ {{a_x}}&{{a_y}}&{{a_z}} \\\ {{b_x}}&{{b_y}}&{{b_z}} \end{array}} \right| = \hat i({b_z}{a_y} - {a_z}{b_y}) - \hat j({a_x}{b_z} - {b_x}{a_z}) + \hat k({a_x}{b_y} - {b_x}{a_y})$$ **Complete step by step answer:** (1) Given vectors are $$\vec a\, = 4\hat i + 3\hat j + k,\,\,\vec b = 2\hat i - \hat j + 2\hat k$$ (2) For cosine of the angle, we use dot product $$\vec a\,\,.\,\vec b = \,|\vec a|\,\,|\vec b|\cos \theta $$ (3) $$\cos \theta = \dfrac{{\vec a.\vec b}}{{|\vec a|\,|\vec b|}}$$ (4) Calculate dot product of vector $$\vec a.\vec b = (4\hat i + 3\hat j + \hat k).(2\hat i - \hat j + 2\hat k)$$ Multiplying $$4\hat i \times 2\hat i$$,$$3\hat j \times - \hat j\,and\,\,\hat k \times 2\hat k$$ ,we get $$ = 8 - 3 + 2$$ $$ = 10 - 3$$ $$\vec a.\vec b = 7$$ Also,$$|\vec a|\,\, = \sqrt {{{(4)}^2} + {{(3)}^2} + {{(1)}^2}} $$ $ = \sqrt {16 + 9 + 1} $ $$ = \sqrt {26} $$ $$|\vec b|\,\, = \sqrt {{{(2)}^2} + {{(1)}^2} + {{(2)}^2}} $$ $$ = \sqrt {4 + 1 + 4} $$

= \sqrt 9 \\
= 3 \\

$$\left( 5 \right)$$ Using values of step $$\left( 4 \right)$$in step$$\left( 3 \right)$$, we get $$cos\theta = \dfrac{7}{{\sqrt {26} .(3)}}$$ Which is the required cosine of the angle between vectors. (6) Now to find unit vector perpendicular to both a and b is given as $$\dfrac{{(a \times b)}}{{|a \times b|}}$$ (7) Calculating $$\vec a \times \vec b$$first $$\vec a \times \vec b\left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\\ 4&3&1 \\\ 2&{ - 1}&2 \end{array}} \right|$$ $$ = \hat i(6 + 1) - \hat j(8 - 2) + \hat k( - 4 - 6)$$

|\vec a \times \vec b|, = 7\hat i - 6\hat j - 10k \\
|\vec a \times \vec b|, = \sqrt {{{(7)}^2} + {{( - 6)}^2} + {{( - 10)}^2}} \\

$$\sqrt {49 + 36 + 100} = \sqrt {285} $$ (8) Therefore, unit perpendicular vector to both $$\vec a\,\,and\,\,\vec b$$ is $$\dfrac{{7\hat i + 6\hat j - 10\hat k}}{{\left( {\sqrt {285} } \right)}}$$ (9) Now to calculate sinθ of the angle between the given vectors $$\vec a \times \vec b = \,|\vec a|\,\,\vec b|\,\sin \theta $$ $$ \Rightarrow \sin \theta = \dfrac{{\vec a \times \vec b}}{{|\vec a|\,\,|\vec b|}}$$ $$\sin \theta = \dfrac{{(7\hat i + 6\hat j - 10\hat k)}}{{\sqrt {26} \,\,\sqrt 3 }}$$ $$\sin \theta = \dfrac{{7\hat i + 6\hat j - 10\hat k}}{{\sqrt {78} }}$$ Which is required sinθ of the angle between given vectors. **Hence, the correct option is D.** **Note:** A vector is an object that has both a magnitude and a direction. Geometrically, we can picture a vector as a directed line segment, whose length is the magnitude of the vector and with an arrow indicating the direction.