Solveeit Logo

Question

Question: Find \[cosec 6{0^ \circ }\], \[sec 6{0^ \circ }\], and \[\cot 6{0^ \circ }\]?...

Find cosec60cosec 6{0^ \circ }, sec60sec 6{0^ \circ }, and cot60\cot 6{0^ \circ }?

Explanation

Solution

Hint : Here in this question, we have to find the value of trigonometric ratio cosecant, secant and cotangent at an angle of 606{0^ \circ } or π3\dfrac{\pi }{3}. This can be found by using equilateral triangles and Pythagoras identity. And later by using the definition of cosecant and cotangent ratios of trigonometric on simplification, we get the required solution.

Complete step-by-step answer :

Let us calculate the trigonometric ratios cosecant, secant and cotangent of 60{60^ \circ } which is equal to π3c{\dfrac{\pi }{3}^c} i.e., π3c=60{\dfrac{\pi }{3}^c} = {60^ \circ }.
Consider an equilateral triangle ABC. Since each angle in an equilateral triangle is 60°, therefore, !A=!B=!C=60\left| \\!{\underline {\, A \,}} \right. = \left| \\!{\underline {\, B \,}} \right. = \left| \\!{\underline {\, C \,}} \right. = {60^ \circ }
Draw the perpendicular AD from A to the side BC.
ΔABDΔACD\therefore \,\,\Delta \,ABD \cong \Delta \,ACD
ΔABD\Delta \,ABD is a right triangle, right-angled at D with !BAD=30\left| \\!{\underline {\, {BAD} \,}} \right. = {30^ \circ } and !ABD=60\left| \\!{\underline {\, {ABD} \,}} \right. = {60^ \circ }
For finding the trigonometric ratios, we need to know the lengths of the sides of the triangle. So, let us suppose that AB=AC=BC=2aAB = AC = BC = 2a. Then,
BD=12BC\Rightarrow \,BD = \dfrac{1}{2}BC
BD=12BC\Rightarrow \,BD = \dfrac{1}{2}BC
BD=122a\Rightarrow \,BD = \dfrac{1}{2} \cdot 2a
BD=a\Rightarrow \,BD = a
Now, the height of the ΔABC\Delta \,ABC is AD then by Pythagoras theorem i.e., AB2=AD2+BD2A{B^2} = A{D^2} + B{D^2}, then
AD2=AB2BD2\Rightarrow \,\,A{D^2} = A{B^2} - B{D^2}
AD2=(2a)2(a)2\Rightarrow \,\,A{D^2} = {\left( {2a} \right)^2} - {\left( a \right)^2}
AD2=4a2a2\Rightarrow \,\,A{D^2} = 4{a^2} - {a^2}
AD2=3a2\Rightarrow \,\,A{D^2} = 3{a^2}
AD=3a2\Rightarrow \,\,AD = \sqrt {3{a^2}}
On simplification, we get
AD=3a\Rightarrow \,\,AD = \sqrt 3 \,a
In ΔABD\Delta \,ABD, for the angle !A=60=π3\left| \\!{\underline {\, A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}, side AD is a opposite side, AB is hypotenuse and BD acts as a adjacent side, then
Now, use the definition of trigonometric ratios
Definition of sine ratio at !A=60=π3\left| \\!{\underline {\, A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3} is:
sin(60)=OppositeHypotenuse\sin \left( {6{0^ \circ }} \right) = \dfrac{{Opposite}}{{Hypotenuse}}
sin(60)=ADAB\Rightarrow \,\sin \left( {6{0^ \circ }} \right) = \dfrac{{AD}}{{AB}}
sin(60)=3a2a\Rightarrow \,\sin \left( {{{60}^ \circ }} \right) = \dfrac{{\sqrt 3 a}}{{2a}}
On simplification, we get
sin(60)=32\Rightarrow \,\sin \left( {{{60}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2}
Definition of cosine ratio at !A=60=π3\left| \\!{\underline {\, A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3} is:
cos(60)=AdjacentHypotenuse\cos \left( {{{60}^ \circ }} \right) = \dfrac{{Adjacent}}{{Hypotenuse}}
cos(60)=BDAB\Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{{BD}}{{AB}}
cos(60)=a2a\Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{a}{{2a}}
On simplification, we get
cos(60)=12\Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2}
As we know, by the definition of trigonometric ratios cosecant is a reciprocal of sine.
Cosecant ratio at !A=60=π3\left| \\!{\underline {\, A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3} is:
cosec(60)=1sin(60)cosec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sin \left( {{{60}^ \circ }} \right)}}
On substituting value ofsin(60)\sin \left( {{{60}^ \circ }} \right), we have
cosec(60)=132\Rightarrow \,\,cosec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}
On simplification, we get
cosec(60)=23\Rightarrow \,\,cosec\left( {{{60}^ \circ }} \right) = \dfrac{2}{{\sqrt 3 }}
Similarly, secant is a reciprocal of cosine, then
sec(60)=1cos(60)sec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\cos \left( {{{60}^ \circ }} \right)}}
On substituting value of cos(60)\cos \left( {{{60}^ \circ }} \right), we have
sec(60)=112\Rightarrow \,\,sec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\dfrac{1}{2}}}
On simplification, we get
sec(60)=2\Rightarrow \,\,sec\left( {{{60}^ \circ }} \right) = 2
Again, by the definition we know, cotangent is the ratio between the cosine and sine, then
cotangent ratio at !A=60=π3\left| \\!{\underline {\, A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3} is:
On substituting value of cos(60)\cos \left( {{{60}^ \circ }} \right) and sin(60)\sin \left( {{{60}^ \circ }} \right), we have
cot(60)=cos(60)sin(60)\Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{{\cos \left( {{{60}^ \circ }} \right)}}{{\sin \left( {{{60}^ \circ }} \right)}}
cot(60)=1232\Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{{\dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}
cot(60)=12×23\Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{2} \times \dfrac{2}{{\sqrt 3 }}
On simplification, we get
cot(60)=13\Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}
Hence, the value of cosec(60)=23cosec\left( {{{60}^ \circ }} \right) = \dfrac{2}{{\sqrt 3 }}, sec(60)=2sec\left( {{{60}^ \circ }} \right) = 2 and cot(60)=13\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}.

Note : When solving these type of questions, first we have to know the definition of six trigonometric ratios i.e., sine, cosine, tangent, secant, cosecant and cotangent and know the property of equilateral triangle i.e., all sides and angles of equilateral triangle is equal and know the formula of Pythagoras theorem i.e., hyp2=adj2+opp2hy{p^2} = ad{j^2} + op{p^2}.x