Question
Mathematics Question on Trigonometric Equations
Find ∫(cos√x) dx=?
Answer
I=∫cosxdx
Put
x=t so that
2x1dx=dt
∴I=f(cost)2tdt=2∫tcostdt
Integrating by parts, we get
I=2[tsint−∫1.sintdt]
=2[tsint+cost]
=2[xsinx+cosx].
Find ∫(cos√x) dx=?
I=∫cosxdx
Put
x=t so that
2x1dx=dt
∴I=f(cost)2tdt=2∫tcostdt
Integrating by parts, we get
I=2[tsint−∫1.sintdt]
=2[tsint+cost]
=2[xsinx+cosx].