Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

Find ∫(cos√x) dx=?

Answer

I=cosxdxI=\int cos\,x\,dx
Put
x=t\sqrt{x}=t so that
12xdx=dt\frac{1}{2\sqrt{x}}dx=dt
I=f(cost)2tdt=2tcostdtI=f(cos\,t)2tdt = 2\int tcos\,t\,dt
Integrating by parts, we get
I=2[tsint1.sintdt]I=2[tsin\,t-\int 1.sint\,dt]
=2[tsint+cost]2[tsint+cost]
=2[xsinx+cosx]2[x\,sin\,x+cos\,x].