Solveeit Logo

Question

Question: Find \( \cos 60\times \cos 30+\sin 60\times \sin 30 \) ....

Find cos60×cos30+sin60×sin30\cos 60\times \cos 30+\sin 60\times \sin 30 .

Explanation

Solution

Hint : We first describe the concept and formulas of compound angles for the trigonometric ratio cos. We use the formulas of cosAcosB+sinAsinB=cos(AB)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right) . We put the values of A=60;B=30A=60;B=30 to find the solution for cos60×cos30+sin60×sin30\cos 60\times \cos 30+\sin 60\times \sin 30 .

Complete step-by-step answer :
To simplify or to express in product form the given expression
cos60×cos30+sin60×sin30\cos 60\times \cos 30+\sin 60\times \sin 30 , we are going to use the laws of compound angles. A compound angle is an algebraic sum of two or more angles. We use trigonometric identities to connote compound angles through trigonometric functions.
The formula for compound angles gives
cosAcosB+sinAsinB=cos(AB)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right) .
We assume the variables as A=60;B=30A=60;B=30 .
Putting the values, we get
cos60cos30+sin60sin30=cos(6030)\cos 60\cos 30+\sin 60\sin 30=\cos \left( 60-30 \right) .
The simplified form is cos60cos30+sin60sin30=cos30\cos 60\cos 30+\sin 60\sin 30=\cos 30
We know that the value for cos30=32\cos 30=\dfrac{\sqrt{3}}{2} .
Therefore, we have cos60×cos30+sin60×sin30=32\cos 60\times \cos 30+\sin 60\times \sin 30=\dfrac{\sqrt{3}}{2} .
So, the correct answer is “ 32\dfrac{\sqrt{3}}{2} ”.

Note : We can also put the individual values of the terms in cos60×cos30+sin60×sin30\cos 60\times \cos 30+\sin 60\times \sin 30 .
We know that cos60=sin30=12,cos30=sin60=32\cos 60=\sin 30=\dfrac{1}{2},\cos 30=\sin 60=\dfrac{\sqrt{3}}{2} .
Putting the values, we get cos60×cos30+sin60×sin30=12×32+32×12=32\cos 60\times \cos 30+\sin 60\times \sin 30=\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}=\dfrac{\sqrt{3}}{2} .