Solveeit Logo

Question

Mathematics Question on Determinants

Find area of the triangle with vertices at the point given in each of the following:
I. (1,0),(6,0),(4,3)
II. (2,7),(1,1),(10,8)
III. (−2,−3),(3,2),(−1,−8)

Answer

(i) The area of the triangle with vertices (1, 0), (6, 0), (4, 3) is given by the relation,

\triangle=\frac{1}{2}$$\begin{vmatrix}1&0&1\\\6&0&1\\\4&3&1\end{vmatrix}

=12\frac{1}{2}[1(0-3)-0(6-4)+1(18-0)]

=12\frac{1}{2}[-3+18]=152\frac{15}{2} square units


(ii) The area of the triangle with vertices (2, 7), (1, 1), (10, 8) is given by the relation,

△=\frac{1}{2}$$\begin{vmatrix}2&7&1\\\1&1&1\\\10&8&1\end{vmatrix}

=12\frac{1}{2} [2(1-8)-7(1-10)+1(8-10)]

=12\frac{1}{2}[-14+63-2]

=12\frac{1}{2}[-16+63]

=472\frac{47}{2} square units


(iii) The area of the triangle with vertices (−2, −3), (3, 2), (−1, −8)
is given by the relation,

△=\frac{1}{2}$$\begin{vmatrix}-2&-3&1\\\3&2&1\\\\-1&-8&1\end{vmatrix}

=12\frac{1}{2}[-2(2+8)+3(3+1)+1(-24+2)]

=12\frac{1}{2}[-20+12-22]

=-302\frac{30}{2}=-15

Hence, the area of the triangle is I-15I=15 square units.