Solveeit Logo

Question

Question: Find area enclosed by $y=x^2+x+1,y=2x+3$....

Find area enclosed by y=x2+x+1,y=2x+3y=x^2+x+1,y=2x+3.

Answer

9/2

Explanation

Solution

To find the area enclosed by the two curves y=x2+x+1y=x^2+x+1 and y=2x+3y=2x+3, we follow these steps:

  1. Find the points of intersection: Set the two equations equal to each other to find the x-coordinates where they intersect: x2+x+1=2x+3x^2+x+1 = 2x+3 x2+x2x+13=0x^2+x-2x+1-3 = 0 x2x2=0x^2-x-2 = 0 Factor the quadratic equation: (x2)(x+1)=0(x-2)(x+1) = 0 The intersection points occur at x=1x=-1 and x=2x=2. These will be our limits of integration.

  2. Determine which curve is above the other: To determine which function is greater in the interval [1,2][-1, 2], pick a test point, for example, x=0x=0. For y=x2+x+1y=x^2+x+1, at x=0x=0, y=02+0+1=1y=0^2+0+1=1. For y=2x+3y=2x+3, at x=0x=0, y=2(0)+3=3y=2(0)+3=3. Since 3>13 > 1, the line y=2x+3y=2x+3 is above the parabola y=x2+x+1y=x^2+x+1 in the interval [1,2][-1, 2].

  3. Set up the definite integral: The area AA enclosed by the curves is given by the integral of the upper curve minus the lower curve, from the lower x-limit to the upper x-limit: A=12((2x+3)(x2+x+1))dxA = \int_{-1}^{2} ((2x+3) - (x^2+x+1)) dx A=12(x2+x+2)dxA = \int_{-1}^{2} (-x^2+x+2) dx

  4. Evaluate the integral: Integrate term by term: A=[x33+x22+2x]12A = \left[ -\frac{x^3}{3} + \frac{x^2}{2} + 2x \right]_{-1}^{2} Now, substitute the upper limit and subtract the result of substituting the lower limit: A=((2)33+(2)22+2(2))((1)33+(1)22+2(1))A = \left( -\frac{(2)^3}{3} + \frac{(2)^2}{2} + 2(2) \right) - \left( -\frac{(-1)^3}{3} + \frac{(-1)^2}{2} + 2(-1) \right) A=(83+42+4)(13+122)A = \left( -\frac{8}{3} + \frac{4}{2} + 4 \right) - \left( -\frac{-1}{3} + \frac{1}{2} - 2 \right) A=(83+2+4)(13+122)A = \left( -\frac{8}{3} + 2 + 4 \right) - \left( \frac{1}{3} + \frac{1}{2} - 2 \right) A=(83+6)(2+3126)A = \left( -\frac{8}{3} + 6 \right) - \left( \frac{2+3-12}{6} \right) A=(8+183)(76)A = \left( \frac{-8+18}{3} \right) - \left( \frac{-7}{6} \right) A=103+76A = \frac{10}{3} + \frac{7}{6} To add the fractions, find a common denominator (6): A=206+76A = \frac{20}{6} + \frac{7}{6} A=276A = \frac{27}{6} Simplify the fraction: A=92A = \frac{9}{2}

The area enclosed by the curves is 92\frac{9}{2} square units.