Solveeit Logo

Question

Question: Find area enclosed by $y = ex. lnx, y = \frac{ln x}{ex}$....

Find area enclosed by y=ex.lnx,y=lnxexy = ex. lnx, y = \frac{ln x}{ex}.

Answer

e254e\frac{e^2 - 5}{4e}

Explanation

Solution

To find the area enclosed by the two curves y=exlnxy = ex \ln x and y=lnxexy = \frac{\ln x}{ex}, we first need to find their points of intersection.

1. Find the Intersection Points: Set the two equations equal to each other: exlnx=lnxexex \ln x = \frac{\ln x}{ex} Multiply both sides by exex (assuming x0x \neq 0): e2x2lnx=lnxe^2 x^2 \ln x = \ln x e2x2lnxlnx=0e^2 x^2 \ln x - \ln x = 0 lnx(e2x21)=0\ln x (e^2 x^2 - 1) = 0

This equation gives two possibilities:

  • lnx=0    x=e0=1\ln x = 0 \implies x = e^0 = 1.
  • e2x21=0    e2x2=1    x2=1e2    x=±1ee^2 x^2 - 1 = 0 \implies e^2 x^2 = 1 \implies x^2 = \frac{1}{e^2} \implies x = \pm \frac{1}{e}. Since lnx\ln x is defined only for x>0x > 0, we take x=1ex = \frac{1}{e}.

So, the intersection points are x=1ex = \frac{1}{e} and x=1x = 1.

2. Determine Which Curve is Above the Other: Let f(x)=exlnxf(x) = ex \ln x and g(x)=lnxexg(x) = \frac{\ln x}{ex}. We need to determine which function is greater in the interval (1e,1)(\frac{1}{e}, 1). Consider the difference g(x)f(x)g(x) - f(x): g(x)f(x)=lnxexexlnx=lnx(1exex)=lnx(1e2x2ex)g(x) - f(x) = \frac{\ln x}{ex} - ex \ln x = \ln x \left( \frac{1}{ex} - ex \right) = \ln x \left( \frac{1 - e^2 x^2}{ex} \right).

In the interval x(1e,1)x \in (\frac{1}{e}, 1):

  • lnx\ln x is negative (since x<1x < 1).
  • Since x>1ex > \frac{1}{e}, we have x2>1e2x^2 > \frac{1}{e^2}, which implies e2x2>1e^2 x^2 > 1. Therefore, 1e2x21 - e^2 x^2 is negative.
  • exex is positive.

So, the term lnx(1e2x2ex)\ln x \left( \frac{1 - e^2 x^2}{ex} \right) is (negative) ×\times (negative) ×\times (positive) = positive. This means g(x)f(x)>0g(x) - f(x) > 0, so g(x)g(x) is the upper curve and f(x)f(x) is the lower curve in the interval (1e,1)(\frac{1}{e}, 1).

3. Set up the Definite Integral for the Area: The area AA enclosed by the curves is given by: A=1/e1(g(x)f(x))dx=1/e1(lnxexexlnx)dxA = \int_{1/e}^{1} (g(x) - f(x)) dx = \int_{1/e}^{1} \left( \frac{\ln x}{ex} - ex \ln x \right) dx

4. Evaluate the Integral: We integrate term by term.

  • Integral of the first term: lnxexdx=1elnxxdx\int \frac{\ln x}{ex} dx = \frac{1}{e} \int \frac{\ln x}{x} dx. Let u=lnxu = \ln x, then du=1xdxdu = \frac{1}{x} dx. 1eudu=1eu22=(lnx)22e\frac{1}{e} \int u du = \frac{1}{e} \frac{u^2}{2} = \frac{(\ln x)^2}{2e}.

  • Integral of the second term: exlnxdx\int ex \ln x dx. Use integration by parts: PQdx=PQPQdx\int P Q' dx = PQ - \int P' Q dx. Let P=lnxP = \ln x and Q=exQ' = ex. Then P=1xP' = \frac{1}{x} and Q=ex22Q = \frac{ex^2}{2}. exlnxdx=(lnx)(ex22)(1x)(ex22)dx\int ex \ln x dx = (\ln x) \left( \frac{ex^2}{2} \right) - \int \left( \frac{1}{x} \right) \left( \frac{ex^2}{2} \right) dx =ex2lnx2ex2dx= \frac{ex^2 \ln x}{2} - \int \frac{ex}{2} dx =ex2lnx2ex24= \frac{ex^2 \ln x}{2} - \frac{ex^2}{4}.

Now, combine these results to find the indefinite integral of g(x)f(x)g(x) - f(x): (lnxexexlnx)dx=(lnx)22e(ex2lnx2ex24)\int \left( \frac{\ln x}{ex} - ex \ln x \right) dx = \frac{(\ln x)^2}{2e} - \left( \frac{ex^2 \ln x}{2} - \frac{ex^2}{4} \right) =(lnx)22eex2lnx2+ex24= \frac{(\ln x)^2}{2e} - \frac{ex^2 \ln x}{2} + \frac{ex^2}{4}.

Now, evaluate this definite integral from x=1ex = \frac{1}{e} to x=1x = 1: A=[(lnx)22eex2lnx2+ex24]1/e1A = \left[ \frac{(\ln x)^2}{2e} - \frac{ex^2 \ln x}{2} + \frac{ex^2}{4} \right]_{1/e}^{1}

  • At the upper limit x=1x=1: (ln1)22ee(1)2ln12+e(1)24=02ee02+e4=e4\frac{(\ln 1)^2}{2e} - \frac{e(1)^2 \ln 1}{2} + \frac{e(1)^2}{4} = \frac{0}{2e} - \frac{e \cdot 0}{2} + \frac{e}{4} = \frac{e}{4}.

  • At the lower limit x=1ex=\frac{1}{e}: Note that ln(1e)=ln(e1)=1\ln(\frac{1}{e}) = \ln(e^{-1}) = -1. (ln(1e))22ee(1e)2ln(1e)2+e(1e)24\frac{(\ln(\frac{1}{e}))^2}{2e} - \frac{e(\frac{1}{e})^2 \ln(\frac{1}{e})}{2} + \frac{e(\frac{1}{e})^2}{4} =(1)22ee1e2(1)2+e1e24= \frac{(-1)^2}{2e} - \frac{e \cdot \frac{1}{e^2} \cdot (-1)}{2} + \frac{e \cdot \frac{1}{e^2}}{4} =12e1e(1)2+1e4= \frac{1}{2e} - \frac{\frac{1}{e} \cdot (-1)}{2} + \frac{\frac{1}{e}}{4} =12e+12e+14e= \frac{1}{2e} + \frac{1}{2e} + \frac{1}{4e} =22e+14e=1e+14e=4+14e=54e= \frac{2}{2e} + \frac{1}{4e} = \frac{1}{e} + \frac{1}{4e} = \frac{4+1}{4e} = \frac{5}{4e}.

Finally, subtract the value at the lower limit from the value at the upper limit: A=e454e=e24e54e=e254eA = \frac{e}{4} - \frac{5}{4e} = \frac{e^2}{4e} - \frac{5}{4e} = \frac{e^2 - 5}{4e}.

The area enclosed by the curves is e254e\frac{e^2 - 5}{4e}.