Solveeit Logo

Question

Question: Find area enclosed by $(y - sin^{-1}x)^2 = x - x^2$....

Find area enclosed by (ysin1x)2=xx2(y - sin^{-1}x)^2 = x - x^2.

Answer

The area enclosed by the curve is π4\frac{\pi}{4}.

Explanation

Solution

The given equation is (ysin1x)2=xx2(y - \sin^{-1}x)^2 = x - x^2.

Step 1: Determine the domain for x. For the right-hand side, xx2x - x^2, to be defined and non-negative (since it's equal to a square), we must have: xx20x - x^2 \ge 0 x(1x)0x(1 - x) \ge 0 This inequality holds true for 0x10 \le x \le 1. Additionally, for sin1x\sin^{-1}x to be defined, xx must be in the interval [1,1][-1, 1]. Combining these conditions, the valid domain for xx is [0,1][0, 1].

Step 2: Express y in terms of x. Taking the square root of both sides of the given equation: ysin1x=±xx2y - \sin^{-1}x = \pm\sqrt{x - x^2} This gives two functions for yy:

  1. y1=sin1x+xx2y_1 = \sin^{-1}x + \sqrt{x - x^2}
  2. y2=sin1xxx2y_2 = \sin^{-1}x - \sqrt{x - x^2}

Step 3: Set up the integral for the area. The area enclosed by the curve is the area between the two functions y1y_1 and y2y_2 over the interval [0,1][0, 1]. Area A=01(y1y2)dxA = \int_{0}^{1} (y_1 - y_2) dx A=01[(sin1x+xx2)(sin1xxx2)]dxA = \int_{0}^{1} \left[ (\sin^{-1}x + \sqrt{x - x^2}) - (\sin^{-1}x - \sqrt{x - x^2}) \right] dx A=012xx2dxA = \int_{0}^{1} 2\sqrt{x - x^2} dx

Step 4: Simplify the integrand by completing the square. The term inside the square root, xx2x - x^2, can be rewritten by completing the square: xx2=(x2x)=(x2x+1414)=((x12)214)=14(x12)2x - x^2 = -(x^2 - x) = -\left(x^2 - x + \frac{1}{4} - \frac{1}{4}\right) = -\left(\left(x - \frac{1}{2}\right)^2 - \frac{1}{4}\right) = \frac{1}{4} - \left(x - \frac{1}{2}\right)^2

Now, the integral becomes: A=20114(x12)2dxA = 2 \int_{0}^{1} \sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^2} dx

Step 5: Evaluate the integral using a substitution or geometric interpretation. Let u=x12u = x - \frac{1}{2}. Then du=dxdu = dx. When x=0x = 0, u=012=12u = 0 - \frac{1}{2} = -\frac{1}{2}. When x=1x = 1, u=112=12u = 1 - \frac{1}{2} = \frac{1}{2}. The integral transforms to: A=21/21/2(12)2u2duA = 2 \int_{-1/2}^{1/2} \sqrt{\left(\frac{1}{2}\right)^2 - u^2} du

The integral aaa2u2du\int_{-a}^{a} \sqrt{a^2 - u^2} du represents the area of a semicircle with radius aa. In this case, a=12a = \frac{1}{2}. The area of a semicircle with radius aa is 12πa2\frac{1}{2}\pi a^2. So, 1/21/2(12)2u2du=12π(12)2=12π(14)=π8\int_{-1/2}^{1/2} \sqrt{\left(\frac{1}{2}\right)^2 - u^2} du = \frac{1}{2}\pi \left(\frac{1}{2}\right)^2 = \frac{1}{2}\pi \left(\frac{1}{4}\right) = \frac{\pi}{8}.

Therefore, the total area AA is: A=2×π8=π4A = 2 \times \frac{\pi}{8} = \frac{\pi}{4}