Question
Question: Find an expression for \(\tan 7\theta \) in terms of \(\tan \theta \) . By considering the equation ...
Find an expression for tan7θ in terms of tanθ . By considering the equation tan7θ=0 , show that x=tan2(73π) satisfies the cubic equation x3−21x2+35x−7=0 .
Solution
We have to split 7θ as the sum of 3θ and 4θ . Then, we have to apply the properties of trigonometric functions, mainly, tan(a+b)=1−tanatanbtana+tanb , tan3θ=1−3tan2θ3tanθ−tan3θ and tan2θ=1−tan2θ2tanθ and simplify the expression. Then, we have to equate tan7θ to 0 and form a polynomial. Finally, in the given polynomial, substitute x=tan2(73π) and check whether the resultant polynomial is equal to the polynomial obtained in the previous step.
Complete step by step answer:
We have to express tan7θ in terms of tanθ . We know that tan(a+b)=1−tanatanbtana+tanb . Let us write 7θ as the sum of 3θ and 4θ .
⇒tan(7θ)=tan(3θ+4θ)=1−tan3θtan4θtan3θ+tan4θ
We know that tan3θ=1−3tan2θ3tanθ−tan3θ .
⇒tan(7θ)=1−(1−3tan2θ3tanθ−tan3θ)tan4θ1−3tan2θ3tanθ−tan3θ+tan4θ
We can write tan4θ as tan2(2θ) . We know that tan2θ=1−tan2θ2tanθ . Therefore, the above equation becomes
⇒tan(7θ)=1−(1−3tan2θ3tanθ−tan3θ)1−tan22θ2tan2θ1−3tan2θ3tanθ−tan3θ+1−tan22θ2tan2θ
⇒tan(7θ)=(1−3tan2θ)(1−tan22θ)(1−3tan2θ)(1−tan22θ)−(3tanθ−tan3θ)2tan2θ(1−3tan2θ)(1−tan22θ)(3tanθ−tan3θ)(1−tan22θ)+2tan2θ(1−3tan2θ)
Now, let us cancel common terms.
⇒tan(7θ)=\requirecancel(1−3tan2θ)(1−tan22θ)(1−3tan2θ)(1−tan22θ)−(3tanθ−tan3θ)2tan2θ\requirecancel(1−3tan2θ)(1−tan22θ)(3tanθ−tan3θ)(1−tan22θ)+2tan2θ(1−3tan2θ)⇒tan(7θ)=(1−3tan2θ)(1−tan22θ)−(3tanθ−tan3θ)2tan2θ(3tanθ−tan3θ)(1−tan22θ)+2tan2θ(1−3tan2θ)
Again we have to apply the property tan2θ=1−tan2θ2tanθ in the above equation.
⇒tan(7θ)=(1−3tan2θ)(1−(1−tan2θ2tanθ)2)−(3tanθ−tan3θ)2(1−tan2θ2tanθ)(3tanθ−tan3θ)(1−(1−tan2θ2tanθ)2)+2(1−tan2θ2tanθ)(1−3tan2θ)
⇒tan(7θ)=(1−3tan2θ)((1−tan2θ)2(1−tan2θ)2−4tan2θ)−1−tan2θ4tanθ(3tanθ−tan3θ)(3tanθ−tan3θ)((1−tan2θ)2(1−tan2θ)2−4tan2θ)+1−tan2θ4tanθ(1−3tan2θ)
Let us simplify the terms.
⇒tan(7θ)=(1−tan2θ)2(1−3tan2θ)[(1−tan2θ)2−4tan2θ]−4tanθ(3tanθ−tan3θ)(1−tan2θ)(1−tan2θ)2(3tanθ−tan3θ)[(1−tan2θ)2−4tan2θ]+4tanθ(1−3tan2θ)(1−tan2θ)
We have to cancel the common terms.
⇒tan(7θ)=\requirecancel(1−tan2θ)2(1−3tan2θ)[(1−tan2θ)2−4tan2θ]−4tanθ(3tanθ−tan3θ)(1−tan2θ)\requirecancel(1−tan2θ)2(3tanθ−tan3θ)[(1−tan2θ)2−4tan2θ]+4tanθ(1−3tan2θ)(1−tan2θ)⇒tan(7θ)=(1−3tan2θ)[(1−tan2θ)2−4tan2θ]−4tanθ(3tanθ−tan3θ)(1−tan2θ)(3tanθ−tan3θ)[(1−tan2θ)2−4tan2θ]+4tanθ(1−3tan2θ)(1−tan2θ)
Let us apply distributive property.
⇒tan(7θ)=(1−3tan2θ)(1−tan2θ)2−4tan2θ(1−3tan2θ)+(−12tan2θ+4tan4θ)(1−tan2θ)3tanθ(1−tan2θ)2−12tan3θ−tan3θ(1−tan2θ)2+4tan5θ+(4tanθ−12tan3θ)(1−tan2θ)
We know that (a−b)2=a2−2ab+b2 .
⇒tan(7θ)=(1−3tan2θ)(1−2tan2θ+tan4θ)−4tan2θ(1−3tan2θ)+(−12tan2θ+4tan4θ)(1−tan2θ)3tanθ(1−2tan2θ+tan4θ)−12tan3θ−tan3θ(1−2tan2θ+tan4θ)+4tan5θ+(4tanθ−12tan3θ)(1−tan2θ)
We have to apply distributive property.
⇒tan(7θ)=1−2tan2θ+tan4θ−3tan2θ+6tan4θ−3tan6θ−4tan2θ+12tan4θ−12tan2θ+12tan4θ+4tan6θ3tanθ−6tan3θ+3tan5θ−12tan3θ−tan3θ+2tan5θ−tan7θ+4tan5θ+4tanθ−4tan3θ−12tan3θ+12tan5θWe have to add the like terms.
⇒tan(7θ)=1−21tan2θ+31tan4θ+tan6θ7tanθ−35tan3θ+21tan5θ−tan7θ
Hence, the value of tan(7θ) in terms of tanθ is 1−21tan2θ+31tan4θ+tan6θ7tanθ−35tan3θ+21tan5θ−tan7θ .
Now, we have to equate tan(7θ) to 0.