Solveeit Logo

Question

Question: Find an equation of a curve passing through the point \(\left( 1,1 \right)\) if the perpendicular di...

Find an equation of a curve passing through the point (1,1)\left( 1,1 \right) if the perpendicular distance of the origin from the normal at any point p(x,y)p\left( x,y \right) of the curve is equal to the distance of pp from the X-axis.

Explanation

Solution

We first take the equation of the normal and find its distance from the origin. We equate it with the distance of p(x,y)p\left( x,y \right) from the X-axis. We solve the differential equation and find the equation which satisfies the point (1,1)\left( 1,1 \right) as the curve passes through it.

Complete answer:
Let us assume the curve is y=f(x)y=f\left( x \right). The slope of the normal will be dxdy-\dfrac{dx}{dy} where dydx=f(x)\dfrac{dy}{dx}={{f}^{'}}\left( x \right).
We are trying to find the normal at point p(x,y)p\left( x,y \right).
The equation of the normal becomes Yy=(dxdy)(Xx)Y-y=\left( -\dfrac{dx}{dy} \right)\left( X-x \right).
It is given that the perpendicular distance of the origin from the normal at any point p(x,y)p\left( x,y \right) of the curve is equal to the distance of pp from the X-axis.
The distance of p(x,y)p\left( x,y \right) from the X-axis is yy.
We also know the distance formula from a point (m,n)\left( m,n \right) to the line Ax+Byc=0Ax+By-c=0 will be equal to Am+BncA2+B2\left| \dfrac{Am+Bn-c}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right| units.
Therefore, the perpendicular distance of the origin (0,0)\left( 0,0 \right) from the normal Yy=(dxdy)(Xx)Y-y=\left( -\dfrac{dx}{dy} \right)\left( X-x \right) will be yxdxdy1+(dxdy)2\left| \dfrac{-y-x\dfrac{dx}{dy}}{\sqrt{1+{{\left( \dfrac{dx}{dy} \right)}^{2}}}} \right|.
Forming the equation, we get yxdxdy1+(dxdy)2=y\left| \dfrac{-y-x\dfrac{dx}{dy}}{\sqrt{1+{{\left( \dfrac{dx}{dy} \right)}^{2}}}} \right|=y.
We take the square and simplify it.

& {{\left( -y-x\dfrac{dx}{dy} \right)}^{2}}={{y}^{2}}\left( 1+{{\left( \dfrac{dx}{dy} \right)}^{2}} \right) \\\ & \Rightarrow {{y}^{2}}+{{x}^{2}}{{\left( \dfrac{dx}{dy} \right)}^{2}}+2xy\dfrac{dx}{dy}={{y}^{2}}+{{y}^{2}}{{\left( \dfrac{dx}{dy} \right)}^{2}} \\\ & \Rightarrow {{\left( \dfrac{dx}{dy} \right)}^{2}}\left( {{x}^{2}}-{{y}^{2}} \right)+2xy\dfrac{dx}{dy}=0 \\\ & \Rightarrow \dfrac{dx}{dy}\left[ \dfrac{dx}{dy}\left( {{x}^{2}}-{{y}^{2}} \right)+2xy \right]=0 \\\ \end{aligned}$$ Solving it we get either $$\dfrac{dx}{dy}=0$$ or $$\dfrac{dy}{dx}=\dfrac{{{y}^{2}}-{{x}^{2}}}{2xy}$$. The solution of first differential form gives $x=c$ but that doesn’t satisfy the given conditions. Now we take $$\dfrac{dy}{dx}=\dfrac{{{y}^{2}}-{{x}^{2}}}{2xy}=\dfrac{1}{2}\left( \dfrac{y}{x}-\dfrac{x}{y} \right)$$. We assume $$\dfrac{y}{x}=v$$. The differential of $$y=vx$$ gives $$\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$$. Replacing we get $$\begin{aligned} & \dfrac{dy}{dx}=\dfrac{1}{2}\left( \dfrac{y}{x}-\dfrac{x}{y} \right) \\\ & \Rightarrow v+x\dfrac{dv}{dx}=\dfrac{1}{2}\left( v-\dfrac{1}{v} \right) \\\ & \Rightarrow 2x\dfrac{dv}{dx}=\left( -v-\dfrac{1}{v} \right) \\\ & \Rightarrow \dfrac{2vdv}{{{v}^{2}}+1}=-\dfrac{dx}{x} \\\ \end{aligned}$$ We use the differential form of $d\left( {{v}^{2}}+1 \right)=2vdv$. $$\begin{aligned} & \dfrac{2vdv}{{{v}^{2}}+1}=-\dfrac{dx}{x} \\\ & \Rightarrow \dfrac{d\left( {{v}^{2}}+1 \right)}{{{v}^{2}}+1}+\dfrac{dx}{x}=0 \\\ \end{aligned}$$ Then we use integration to get $$\int{\dfrac{d\left( {{v}^{2}}+1 \right)}{{{v}^{2}}+1}}+\int{\dfrac{dx}{x}}=k$$. Here $k$ is integral constant. $$\begin{aligned} & \int{\dfrac{d\left( {{v}^{2}}+1 \right)}{{{v}^{2}}+1}}+\int{\dfrac{dx}{x}}=k \\\ & \Rightarrow \log \left| {{v}^{2}}+1 \right|+\log \left| x \right|=k \\\ \end{aligned}$$ We put value of $$v=\dfrac{y}{x}$$ in the equation to get $$\begin{aligned} & \log \left| {{v}^{2}}+1 \right|+\log \left| x \right|=k \\\ & \Rightarrow \log \left| \dfrac{{{y}^{2}}+{{x}^{2}}}{{{x}^{2}}} \right|+\log \left| x \right|=k \\\ \end{aligned}$$ The curve goes through point $\left( 1,1 \right)$. Putting the value we get $$k=\log \left| \dfrac{2}{1} \right|+\log \left| 1 \right|=\log 2$$. So, $$\log \left( \dfrac{{{y}^{2}}+{{x}^{2}}}{{{x}^{2}}} \right)+\log \left| x \right|=\log 2$$. We multiply 2 both sides to get $$\begin{aligned} & 2\log \left( \dfrac{{{y}^{2}}+{{x}^{2}}}{{{x}^{2}}} \right)+2\log \left| x \right|=2\log 2 \\\ & \Rightarrow \log {{\left( \dfrac{{{y}^{2}}+{{x}^{2}}}{{{x}^{2}}} \right)}^{2}}+\log {{x}^{2}}=\log 4 \\\ & \Rightarrow \log {{\left( \dfrac{{{y}^{2}}+{{x}^{2}}}{x} \right)}^{2}}=\log 4 \\\ & \Rightarrow {{\left( \dfrac{{{y}^{2}}+{{x}^{2}}}{x} \right)}^{2}}=4 \\\ \end{aligned}$$ The equation becomes $${{\left( \dfrac{{{y}^{2}}+{{x}^{2}}}{x} \right)}^{2}}={{\left( \pm 2 \right)}^{2}}\Rightarrow {{y}^{2}}+{{x}^{2}}=\pm 2x$$. Now putting value of $\left( 1,1 \right)$ in equation $${{y}^{2}}+{{x}^{2}}=-2x$$, we can see it doesn’t satisfy. **So, the equation of the curve is $${{y}^{2}}+{{x}^{2}}=2x$$.** **Note:** In the differential equation we solved it by removing the modulus function. Else we have to use both the signs to proceed. We cannot take square as in logarithm the terms ${{\left( \log x \right)}^{2}}$ and $\log {{x}^{2}}$ denote different things.