Solveeit Logo

Question

Physics Question on Combination of capacitors

Find amount of charge flown from Y to X when switch S is closed.

A

72 μ\muC

B

0 μ\muC

C

54 μ\muC

D

36 μ\muC

Answer

54 μ\muC

Explanation

Solution

Case I : When switch is open:-
Charge is same in series capacitors,
So, qA=qB\quad q_{A} = q_{B}
CAVA=CBVBC_{A} V_{A} = C_{B} V_{B}
VAVB=CBCA(CA=3μF,CB=6μF)\Rightarrow \frac{V_{A}}{V_{B}}=\frac{C_{B}}{C_{A}}\left(C_{A} = 3\mu F, \,C_{B} = 6\mu F\right)
VAVB=63=21\Rightarrow \frac{V_{A}}{V_{B}}=\frac{6}{3}=\frac{2}{1}
And VA+VB=18VV_{A}+V_{B} = 18V
VA=12V\Rightarrow \,V_{A}=12V and VB=6VV_{B}=6V
V1=18VVA=6VV_{1} = 18V - V_{A} = 6V
Similarly, in series resistance,
(RC=3Ω,RD=6Ω)\left(R_{C} = 3\Omega, R_{D} = 6\Omega\right)
VCVD=RCRD\frac{V_{C}}{V_{D}}=\frac{R_{C}}{R_{D}}
VCVD=36=12\frac{V_{C}}{V_{D}}=\frac{3}{6}=\frac{1}{2}
And VC+VD=18VV_{C}+V_{D} = 18V
VC=6V\Rightarrow\,V_{C} = 6V and VD=12DV_{D} = 12D
so V2=18VC=12VV_{2} = 18-V_{C} = 12V
so, charge, also qA=3×12μC=36μCq_{A} = 3\times12\mu C = 36\mu C
qB=6×6μC=36μC\quad\quad\quad\quad\quad\quad q_{B} = 6\times6\mu C=36\mu C
Case II : On closing switch :
V1V_{1} and V2V_{2} will be at the same potential V
At steady state,
VCVD=36\frac{V_{C}}{V_{D}}=\frac{3}{6}
VC+VD=18VV_{C}+V_{D} = 18V
VC+VD=18VV_{C}+V_{D} = 18V
VC=6V,VD=12V\Rightarrow\,V_{C} = 6V,\,V_{D} = 12V
Final charge, on A and B,
qA=6×3=18μCq_{A} = 6\times3 = 18\mu C
qB=6×12=72μCq_{B} = 6\times12 = 72\mu C