Question
Question: Find \[\alpha \] and \[\beta \] so that the function \[f(x) = \left\\{ {\begin{array}{*{20}{c}} ...
Find α and β so that the function f(x) = \left\\{ {\begin{array}{*{20}{c}} {2\sin x,}&{{\text{for}}\, - \pi \leqslant x \leqslant - \dfrac{\pi }{2}} \\\ {\alpha \sin x + \beta ,}&{{\text{for}}\, - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}} \\\ {\cos x,}&{{\text{for}}\,\dfrac{\pi }{2} \leqslant x \leqslant \pi } \end{array}} \right\\}
Solution
Hint : We are asked to find the values of α and β . The value of the function is given for different intervals, using suitable limits on the function form two equations having the terms α and β . Then solve those equations to find the value of α and β .
Complete step-by-step answer :
Given, the function f(x) = \left\\{ {\begin{array}{*{20}{c}}
{2\sin x,}&{{\text{for}}\, - \pi \leqslant x \leqslant - \dfrac{\pi }{2}} \\\
{\alpha \sin x + \beta ,}&{{\text{for}}\, - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}} \\\
{\cos x,}&{{\text{for}}\,\dfrac{\pi }{2} \leqslant x \leqslant \pi }
\end{array}} \right\\}
Let us first form the equations to find the value of α and β .
Taking the limit x=−2π we find the value of f(x) for 2sinx and αsinx+β .
f(−2π)=x→−2πlim2sinx=2sin(−2π)=−2 (i)
f(−2π)=x→−2πlimαsinx+β=αsin(−2π)+β=−α+β (ii)
Equating (i) and (ii), we have
−α+β=−2 (iii)
Taking the limit x=2π we find the value of f(x) for αsinx+β and cosx .
f(2π)=x→2πlimαsinx+β=αsin(2π)+β=α+β (iv)
f(2π)=x→2πlimcosx=cos(2π)=0 (v)
Equating (iv) and (v), we get
α+β=0 (v)
Now, adding equations (iii) and (v), we get