Solveeit Logo

Question

Question: Find all the values of θ satisfying the equation \[\sin \theta + \sin 5\theta = \sin 3\theta \] such...

Find all the values of θ satisfying the equation sinθ+sin5θ=sin3θ\sin \theta + \sin 5\theta = \sin 3\theta such that 0θπ0 \leqslant \theta \leqslant \pi .

Explanation

Solution

Hint- In this question, we use the concept of trigonometric equations. The equations that involve the trigonometric functions of a variable are called trigonometric equations and in which we have to find the value of θ\theta or solution of equation by using the general solution of sinx\sin x and cosx\cos x . General solution of equation sinx=sinαx=nπ+(1)nα and cosx=cosαx=2nπ±α\sin x = \sin \alpha \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\alpha {\text{ and }}\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha where nIn \in I and α\alpha is principal angle.

Complete step by step answer:

Given, a trigonometric equation sinθ+sin5θ=sin3θ\sin \theta + \sin 5\theta = \sin 3\theta
Now, we apply trigonometric identities sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)

2sin(θ+5θ2)cos(θ5θ2)=sin3θ 2sin(6θ2)cos(4θ2)=sin3θ 2sin(3θ)cos(2θ)=sin3θ  \Rightarrow 2\sin \left( {\dfrac{{\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 5\theta }}{2}} \right) = \sin 3\theta \\\ \Rightarrow 2\sin \left( {\dfrac{{6\theta }}{2}} \right)\cos \left( {\dfrac{{ - 4\theta }}{2}} \right) = \sin 3\theta \\\ \Rightarrow 2\sin \left( {3\theta } \right)\cos \left( { - 2\theta } \right) = \sin 3\theta \\\

As we know, cos(x)=cosx\cos \left( { - x} \right) = \cos x

2sin(3θ)cos(2θ)=sin3θ 2sin(3θ)cos(2θ)sin3θ=0 (2cos2θ1)sin3θ=0  \Rightarrow 2\sin \left( {3\theta } \right)\cos \left( {2\theta } \right) = \sin 3\theta \\\ \Rightarrow 2\sin \left( {3\theta } \right)\cos \left( {2\theta } \right) - \sin 3\theta = 0 \\\ \Rightarrow \left( {2\cos 2\theta - 1} \right)\sin 3\theta = 0 \\\

Now, Either sin3θ=0\sin 3\theta = 0 or 2cos2θ1=02\cos 2\theta - 1 = 0
To solving above trigonometric equations, now we use General solution of equation sinx=sinαx=nπ+(1)nα and cosx=cosαx=2nπ±α\sin x = \sin \alpha \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\alpha {\text{ and }}\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha where nIn \in I and α\alpha is principal angle.

sin3θ=sin0 3θ=nπ+(1)n×0 3θ=nπ θ=nπ3,nI(Integer)  \Rightarrow \sin 3\theta = \sin 0 \\\ \Rightarrow 3\theta = n\pi + {\left( { - 1} \right)^n} \times 0 \\\ \Rightarrow 3\theta = n\pi \\\ \Rightarrow \theta = \dfrac{{n\pi }}{3},n \in I\left( {{\text{Integer}}} \right) \\\

Now, the values of θ\theta in interval 0θπ0 \leqslant \theta \leqslant \pi for different integer n is θ=0,π3,2π3,π\theta = 0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi

2cos2θ1=0 cos2θ=12 cos2θ=cosπ3  \Rightarrow 2\cos 2\theta - 1 = 0 \\\ \Rightarrow \cos 2\theta = \dfrac{1}{2} \\\ \Rightarrow \cos 2\theta = \cos \dfrac{\pi }{3} \\\

Now, we use cosx=cosαx=2nπ±α\cos x = \cos \alpha \Rightarrow x = 2n\pi \pm \alpha

2θ=2nπ±π3 θ=nπ±π6,nI(Integer)  \Rightarrow 2\theta = 2n\pi \pm \dfrac{\pi }{3} \\\ \Rightarrow \theta = n\pi \pm \dfrac{\pi }{6},n \in I\left( {{\text{Integer}}} \right) \\\

Now, the values of θ\theta in interval 0θπ0 \leqslant \theta \leqslant \pi for different integer n is θ=π6,5π6\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6}
So, the solutions are θ=0,π6,π3,2π3,5π6,π\theta = 0,\dfrac{\pi }{6},\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{5\pi }}{6},\pi

Note- Signs assume great importance in case of trigonometric functions. Students generally commit mistakes if they don’t remember the general solutions for all which reflects the wrong solutions in the end.