Solveeit Logo

Question

Question: Find all the values of \(\alpha \) for which the equation \({\sin ^4}x + {\cos ^4}x + \sin 2x + \alp...

Find all the values of α\alpha for which the equation sin4x+cos4x+sin2x+α=0{\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0 is valid. Also, find the general solution of the equation.

Explanation

Solution

Here we need to substitute the appropriate algebraic identities and trigonometric identities to find the desired value of α\alpha . We need to find the value of α\alpha such that the given equation is valid or solvable. To find that we just need to convert the equation in either sine form or cosine form by the help of trigonometric formulas. Then we will get a quadratic equation. By solving this we will get the required answer.

Formula to be used:
a) a2+b2=(a+b)22ab{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab
b) sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
c) sinxcosx=sin2x2\sin x\cos x = \dfrac{{\sin 2x}}{2}
d) The quadratic formula of the formax2+bx+c=0a{x^2} + bx + c = 0 is as follows.
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
e)If sinx=sinθ\sin x = \sin \theta , then the general solution is x=nπ+(1)nθx = n\pi + {\left( { - 1} \right)^n}\theta where θ[π2,π2]\theta \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]

Complete step-by-step answer:
Here the given equation is sin4x+cos4x+sin2x+α=0{\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0and we are asked to calculate the values of α\alpha so that the given equation is solvable. Also, we need to find the general solution of the given equation.
sin4x+cos4x+sin2x+α=0{\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0
We shall rewrite the given equation for our convenience.
(sin2x)2+(cos2x)2+sin2x+α=0\Rightarrow {\left( {{{\sin }^2}x} \right)^2} + {\left( {{{\cos }^2}x} \right)^2} + \sin 2x + \alpha = 0
Now we shall apply the algebraic identity a2+b2=(a+b)22ab{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab
(sin2x+cos2x)22sin2xcos2x+sin2x+α=0\Rightarrow {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x + \sin 2x + \alpha = 0
Now we shall apply sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 in the above equation.
(1)22sin2xcos2x+sin2x+α=0\Rightarrow {\left( 1 \right)^2} - 2{\sin ^2}x{\cos ^2}x + \sin 2x + \alpha = 0
12(sinxcosx)2+sin2x+α=0\Rightarrow 1 - 2{\left( {\sin x\cos x} \right)^2} + \sin 2x + \alpha = 0
We know that sin2x=2sinxcosx\sin 2x = 2\sin x\cos x and it can also be written as sinxcosx=sin2x2\sin x\cos x = \dfrac{{\sin 2x}}{2}
We need to apply sinxcosx=sin2x2\sin x\cos x = \dfrac{{\sin 2x}}{2}in the above equation.
12(sin2x2)2+sin2x+α=0\Rightarrow 1 - 2{\left( {\dfrac{{\sin 2x}}{2}} \right)^2} + \sin 2x + \alpha = 0
12sin22x4+sin2x+α=0\Rightarrow 1 - 2\dfrac{{{{\sin }^2}2x}}{4} + \sin 2x + \alpha = 0
1sin22x2+sin2x+α=0\Rightarrow 1 - \dfrac{{{{\sin }^2}2x}}{2} + \sin 2x + \alpha = 0
2sin22x+2sin2x+2α2=0\Rightarrow \dfrac{{2 - {{\sin }^2}2x + 2\sin 2x + 2\alpha }}{2} = 0
2sin22x+2sin2x+2α=0\Rightarrow 2 - {\sin ^2}2x + 2\sin 2x + 2\alpha = 0 ………(1)\left( 1 \right)
We know that sine lies between 1 - 1 and 11 .
Let y=sin2xy = \sin 2x
Since 1sin2x1 - 1 \leqslant \sin 2x \leqslant 1we have 1y1 - 1 \leqslant y \leqslant 1
Now, we shall y=sin2xy = \sin 2xin the equation (1)\left( 1 \right)
2y2+2y+2α=0\Rightarrow 2 - {y^2} + 2y + 2\alpha = 0
y22y(2α+2)=0\Rightarrow {y^2} - 2y - \left( {2\alpha + 2} \right) = 0
The quadratic formula of the formax2+bx+c=0a{x^2} + bx + c = 0 is as follows.
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Here a=1a = 1 , b=2b = - 2 and c=(2α+2)c = - \left( {2\alpha + 2} \right)
Thus, we have y=(2)±(2)24×1×((2α+2))2×1y = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{{\left( { - 2} \right)}^2} - 4 \times 1 \times \left( { - \left( {2\alpha + 2} \right)} \right)} }}{{2 \times 1}}
y=2±44(2α2)2\Rightarrow y = \dfrac{{2 \pm \sqrt {4 - 4\left( { - 2\alpha - 2} \right)} }}{2}
y=2±4+8α+82\Rightarrow y = \dfrac{{2 \pm \sqrt {4 + 8\alpha + 8} }}{2}
y=2±4(1+2α+2)2\Rightarrow y = \dfrac{{2 \pm \sqrt {4\left( {1 + 2\alpha + 2} \right)} }}{2}
y=2(1±3+2α)2\Rightarrow y = \dfrac{{2\left( {1 \pm \sqrt {3 + 2\alpha } } \right)}}{2}
y=1±3+2α\Rightarrow y = 1 \pm \sqrt {3 + 2\alpha }
We know that 1y1 - 1 \leqslant y \leqslant 1
Thus, we have 11±3+2α1 - 1 \leqslant 1 \pm \sqrt {3 + 2\alpha } \leqslant 1
11±3+2α11\Rightarrow - 1 - 1 \leqslant \pm \sqrt {3 + 2\alpha } \leqslant 1 - 1
2±3+2α0\Rightarrow - 2 \leqslant \pm \sqrt {3 + 2\alpha } \leqslant 0
Since the interval ends at zero, we shall ignore the positive root.
23+2α0\Rightarrow - 2 \leqslant - \sqrt {3 + 2\alpha } \leqslant 0
23+2α0\Rightarrow 2 \geqslant \sqrt {3 + 2\alpha } \geqslant 0
03+2α2\Rightarrow 0 \leqslant \sqrt {3 + 2\alpha } \leqslant 2
03+2α22\Rightarrow 0 \leqslant 3 + 2\alpha \leqslant {2^2}
03+2α4\Rightarrow 0 \leqslant 3 + 2\alpha \leqslant 4
032α43\Rightarrow 0 - 3 \leqslant 2\alpha \leqslant 4 - 3
32α1\Rightarrow - 3 \leqslant 2\alpha \leqslant 1
32α12\Rightarrow \dfrac{{ - 3}}{2} \leqslant \alpha \leqslant \dfrac{1}{2}
Thus, α[32,12]\alpha \in \left[ { - \dfrac{3}{2},\dfrac{1}{2}} \right]
Hence, sin4x+cos4x+sin2x+α=0{\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0is valid when α[32,12]\alpha \in \left[ { - \dfrac{3}{2},\dfrac{1}{2}} \right]
Now, we shall find the general solution of sin4x+cos4x+sin2x+α=0{\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0
We have assumed sin2x=y\sin 2x = y and we found y=1±3+2αy = 1 \pm \sqrt {3 + 2\alpha }
So, sin2x=1±3+2α\sin 2x = 1 \pm \sqrt {3 + 2\alpha }
sin2x=sin(sin1(1±3+2α))\Rightarrow \sin 2x = \sin \left( {{{\sin }^{ - 1}}\left( {1 \pm \sqrt {3 + 2\alpha } } \right)} \right)
If sinx=sinθ\sin x = \sin \theta , then the general solution is x=nπ+(1)nθx = n\pi + {\left( { - 1} \right)^n}\theta where θ[π2,π2]\theta \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]
θ=sin1(1±3+2α)\Rightarrow \theta = {\sin ^{ - 1}}\left( {1 \pm \sqrt {3 + 2\alpha } } \right)
Hence, the required general solution is 2x=nπ+(1)n(sin1(1±3+2α))2x = n\pi + {\left( { - 1} \right)^n}\left( {{{\sin }^{ - 1}}\left( {1 \pm \sqrt {3 + 2\alpha } } \right)} \right) where α[32,12]\alpha \in \left[ { - \dfrac{3}{2},\dfrac{1}{2}} \right]
x=nπ2+(1)nsin1(1±3+2α)2\Rightarrow x = \dfrac{{n\pi }}{2} + \dfrac{{{{\left( { - 1} \right)}^n}{{\sin }^{ - 1}}\left( {1 \pm \sqrt {3 + 2\alpha } } \right)}}{2} where α[32,12]\alpha \in \left[ { - \dfrac{3}{2},\dfrac{1}{2}} \right]

Note: We are asked to find the value of α\alpha such that the given equation is solvable. It means that we need to find the range of α\alpha . Also, it is a well-known fact that the sine function is an increasing function and it always lies between 1 - 1 and 11 . To find the general solution, we need to know all the general solutions for all the trigonometric functions.