Solveeit Logo

Question

Mathematics Question on Application of derivatives

Find all the points of local maxima and local minima of the function f(x)=(x1)3(x+1)2f(x) = (x - 1)^3 (x + 1)^2

A

11, 1-1, 1/5-1/5

B

11, 1-1

C

11, 1/5-1/5

D

1-1, 1/5-1/5

Answer

11, 1-1, 1/5-1/5

Explanation

Solution

Let y=f(x)=(x1)3(x+1)2y = f(x) = (x - 1)^3(x + 1)^2. Then, dydx=3(x1)2(x+1)2+2(x+1)(x1)3\frac{dy}{dx} = 3\left(x-1\right)^{2} \left(x + 1\right)^{2} + 2\left(x+ 1\right)\left(x - 1\right)^{3} \Rightarrow \frac{dy}{dx} = \left(x - 1\right)^{2 }\left(x + 1\right)\left\\{3\left(x +1\right) + 2\left(x -1\right)\right\\} dydx=(x1)2(x+1)(5x+1)\Rightarrow \frac{dy}{dx} = \left( x - 1\right)^{ 2} \left(x+1\right)\left(5x + 1\right) For local maximum or local minimum, we have dydx=0(x1)2(x+1)(5x+1)=0 \frac{dy}{dx} = 0 \Rightarrow \left(x -1\right)^{2}\left(x + 1\right)\left(5x + 1\right) = 0 x=1\Rightarrow x = 1 or, x=1x = - 1 or, x=15x = -\frac{1}{5}