Question
Mathematics Question on Application of derivatives
Find all the points of local maxima and local minima of the function f(x)=(x−1)3(x+1)2
A
1, −1, −1/5
B
1, −1
C
1, −1/5
D
−1, −1/5
Answer
1, −1, −1/5
Explanation
Solution
Let y=f(x)=(x−1)3(x+1)2. Then, dxdy=3(x−1)2(x+1)2+2(x+1)(x−1)3 \Rightarrow \frac{dy}{dx} = \left(x - 1\right)^{2 }\left(x + 1\right)\left\\{3\left(x +1\right) + 2\left(x -1\right)\right\\} ⇒dxdy=(x−1)2(x+1)(5x+1) For local maximum or local minimum, we have dxdy=0⇒(x−1)2(x+1)(5x+1)=0 ⇒x=1 or, x=−1 or, x=−51