Solveeit Logo

Question

Question: Find all real values of x that satisfy the following equation: \(|2x-4|+|1-x|=4-x\)...

Find all real values of x that satisfy the following equation:
2x4+1x=4x|2x-4|+|1-x|=4-x

Explanation

Solution

Hint: First take 2 common out of absolute function operator of the first term of LHS. Then break the absolute function considering specific intervals of x one by one. Then it will form a linear equation in one variable which will be easy to solve.

Complete step-by-step answer:

We are given the equation as:
2x4+1x=4x|2x-4|+|1-x|=4-x
We know that for any real number a and b we have
ab=ab|ab|=|a||b|
Applying this concept in the first term of our equation with b = 2 and a = x2x-2.
2x2+1x=4x(i)|2||x-2|+|1-x|=4-x\,\,\,\,\cdot \cdot \cdot \text{(i)}
We know that for any nonnegative real number a,
a=a|a|=a
So applying this in equation (i) we get
2x2+1x=4x(ii)2|x-2|+|1-x|=4-x\,\,\,\,\cdot \cdot \cdot \text{(ii)}
Now for breaking the absolute function operator we find the values of x for each absolute function becoming 0.
x2=0 x=2 and 1x=0 x=1 \begin{aligned} & x-2=0 \\\ & \Rightarrow x=2 \\\ & \text{and} \\\ & 1-x=0 \\\ & \Rightarrow x=1 \\\ \end{aligned}
So there are two critical values of x.
Now considering three cases of x corresponding to two critical values
Case1: x1x\le 1
Then
x212=1x-2\le 1-2=-1
We know that for any real number a ,
|a|=\left\\{ \begin{array}{*{35}{l}} a & \text{for }a\ge 0 \\\ -a & \text{for }a<0 \\\ \end{array} \right.
So x2=(x2)=2x|x-2|=-(x-2)=2-x
Also, x1x\le 1
1x0 1x=1x \begin{aligned} & \Rightarrow 1-x\ge 0 \\\ & \Rightarrow |1-x|=1-x \\\ \end{aligned}
Putting simplified value in equation (ii) we get
2(2x)+1x=4x 42x3=0 2x=1 x=12 \begin{aligned} & 2(2-x)+1-x=4-x \\\ & \Rightarrow 4-2x-3=0 \\\ & \Rightarrow 2x=1 \\\ & \Rightarrow x=\dfrac{1}{2} \\\ \end{aligned}
Now, x=121x=\dfrac{1}{2}\le 1. So our solution comes in the defined range. Hence x=12x=\dfrac{1}{2}is the solution.
Case 2: 1x21\le x\le 2
In this case,
x20 x2=(x2)=2x and 1x0 1x=(1x)=x1 \begin{aligned} & x-2\le 0 \\\ & \Rightarrow |x-2|=-(x-2)=2-x \\\ & \text{and} \\\ & 1-x\le 0 \\\ & \Rightarrow |1-x|=-(1-x)=x-1 \\\ \end{aligned}
So we get our equation as
2(2x)+x1=4x 42x+2x5=0 4=5 \begin{aligned} & 2(2-x)+x-1=4-x \\\ & \Rightarrow 4-2x+2x-5=0 \\\ & \Rightarrow 4=5 \\\ \end{aligned}
It is not possible that 4 = 5. So, no value of x in this range.
Case 3: x2x\ge 2
In this case,
x20 x2=x2 and 1x0 1x=(1x)=x1 \begin{aligned} & x-2\ge 0 \\\ & \Rightarrow |x-2|=x-2 \\\ & \text{and} \\\ & 1-x\le 0 \\\ & \Rightarrow |1-x|=-(1-x)=x-1 \\\ \end{aligned}
So we get our equation as
2(x2)+x1=4x 2x4+2x5=0 4x=9 x=94 \begin{aligned} & 2(x-2)+x-1=4-x \\\ & \Rightarrow 2x-4+2x-5=0 \\\ & \Rightarrow 4x=9 \\\ & \Rightarrow x=\dfrac{9}{4} \\\ \end{aligned}
We see that x=942x=\dfrac{9}{4}\ge 2. So this value of x is accepted.
Hence overall x=12x=\dfrac{1}{2} and x=94x=\dfrac{9}{4} is the solution of the given equation.

Note: This question requires breaking the modulus function and then solving the problem. Students might get wrong in identifying the critical points and then the whole solution may get wrong.